

Columbia River & North Portland Harbor Bridges

May 2024

Columbia River & North Portland Harbor Bridges

Prepared for:

Prepared by:

Shannon & Wilson, Inc. 3990 Collins Way, Suite 100 Lake Oswego, OR 97035

TABLE OF CONTENTS

1.	INTRODUCTION	1-1
1.1	Purpose and Scope	.1-1
1.2	Project Overview	.1-1
1.3	Existing Information	.1-1
2.	GEOLOGIC SETTING	2-1
2.1	Area Overview	.2-1
2.2	Generalized Geologic Deposits	.2-2
3.	FIELD EXPLORATIONS	3-1
3.1	General	
3.2	Columbia River Bridges	.3-1
3.3	North Portland Harbor Bridges	.3-1
3.4	Sampling Limitations and Difficult Drilling	.3-2
4.	LABORATORY TESTING	4-1
5.	LIMITATIONS	5-1
6.	REFERENCES	6-1

FIGURES

Figure 1-1. Vicinity Map

Figure 1-2. Site and Exploration Plan Columbia River Bridges

Figure 1-3. Site and Exploration Plan North Portland Harbor Bridges

TABLES

APPENDICES

Appendix A. Columbia River Boring Logs and Core Photographs Appendix B. North Portland Harbor Boring Logs and Core Photographs Appendix C. Borehole Suspension Logging Results Appendix D. Columbia River Laboratory Test Results Appendix E. North Portland Harbor Laboratory Test Results Appendix F. Important Information About Your Geotechnical/Environmental Report

ACRONYMS AND ABBREVIATIONS

ASTM	ASTM International		
bgs	below ground surface		
bpf	blows per foot		
GDM	Geotechnical Design Manual		
GDR	Geotechnical Data Report		
IBR	Interstate Bridge Replacement		
I.D.	Inside Diameter		
LDP	Local Datum Plane		
NAVD88	North American Vertical Datum of 1988		
0.D.	Outside Diameter		
ODOT	Oregon Department of Transportation		
SPT	Standard Penetration Test		
USCS	Unified Soil Classification System		
USGS	United States Geological Survey		
WSDOT	Washington State Department of Transportation		

1. INTRODUCTION

1.1 Purpose and Scope

This Geotechnical Data Report (GDR) was prepared by Shannon & Wilson, Inc. (Shannon & Wilson), as a subconsultant to WSP, for the Interstate Bridge Replacement (IBR) Team. This report describes the data gathering procedures and presents the test boring logs, field test data, and laboratory testing data assembled for the Columbia River and North Portland Harbor bridge portions of this project. The purpose of the exploration and testing program was to collect geotechnical data to support the IBR Team in conceptual foundation design, identification of potential seismic hazards, and alternatives analyses and cost estimates for the IBR project. No engineering analyses, conclusions, or design recommendations are contained in this report. The design alignments and concepts shown herein are subject to change. The GDR should be used by the Design-Build contractor for final design and construction of the project. Additional geotechnical explorations may be required to meet the requirements of the applicable Geotechnical Design Manual (GDM) for final design of the project features.

1.2 Project Overview

The IBR Project has been developed by the Washington State Department of Transportation (WSDOT) and the Oregon Department of Transportation (ODOT) and includes highway, bridge, and transit improvements between Vancouver, Washington and Portland, Oregon. The approximate locations of the Columbia River and North Portland Harbor Bridges segments are shown on the Vicinity Map, Figure 1-1. Conceptual Columbia River bridge alignments are shown on Figure 1-2 and conceptual North Portland Harbor bridge alignments are shown on Figure 1-3.

1.3 Existing Information

A significant amount of historical geologic and geotechnical engineering information from various sources exists along much of the project corridor. This information was used by Shannon & Wilson and the IBR team to prepare the field exploration program. The data and information from these other sources are available in project reference documents.

2. GEOLOGIC SETTING

2.1 Area Overview

The greater Portland-Vancouver metropolitan area lies within a large geologic basin created by complex folding and faulting of the basement rocks. The Columbia and Willamette Rivers converge within the Portland Basin near the IBR project site. Those large rivers, along with their tributaries, deposited a thick sedimentary basin fill through the late Miocene, Pliocene, and Pleistocene Epochs (about 12.5 million to 11,700 years ago), including well-consolidated and variably cemented sandstone and conglomerate of the Troutdale Formation. Beeson and others (1991) indicate the Troutdale Formation consists of about 100 to 400 feet of well-consolidated friable to moderately well-cemented conglomerate and sandstone deposited around 12.5 million to 2.6 million years ago. The Troutdale Formation was partially eroded during the late Pleistocene ice ages by the ancestral Columbia and Willamette Rivers (Peterson and others, 2011). As a result, the surface of the Troutdale Formation displays variable river channel topography at depths greater than 200 feet below current sea level, near the major rivers in the Portland Basin. Younger late Pleistocene and Holocene sediments from the Columbia River drainage and fills made by humans form the shallow subsurface conditions in the project area.

A series of catastrophic glacial outburst floods, called herein the Missoula Floods, directly impacted and shaped the geologic conditions at the IBR site. During the late stages of the last great ice age, between about 18,000 and 15,000 years ago, a lobe of the continental ice sheet repeatedly blocked and dammed the Clark Fork River in western Montana, which then formed an immense glacial lake called Lake Missoula. The lake grew until its depth was sufficient to buoyantly lift and rupture the ice dam, which allowed the entire massive lake to empty catastrophically. Once the lake emptied, the ice sheet again gradually dammed the Clark Fork Valley and the lake refilled, leading to 40 or more repetitive outburst floods at intervals of decades (Allen and others, 2009). During each short-lived Missoula Flood episode, floodwaters washed across the Idaho panhandle and eastern Washington scablands, and through the Columbia River Gorge to the Pacific Ocean. In the Portland Basin these floods temporarily pooled to elevations of about 400 feet, forming massive-scale sedimentary deposits as fine-grained sediment settled out of the turbid floodwater. Boulders, cobbles, and gravel were deposited nearest the mouth of the gorge, locally downstream of other hard rock outcrops that were scoured by the energetic flood waters, and elsewhere by ice rafts. Great cobble-gravel bars reached westward across the basin, grading to thick blankets of micaceous sand (Allen and others, 2009).

Following the final glacial outburst floods, the sea level rose by about 300 feet in response to glacial retreat. This rapid sea level rise formed an estuarine environment that extended far upstream in the deep channels of the Columbia River. This low energy environment rapidly filled with Holocene sandy alluvium and broad floodplains developed along the primary Columbia River channel (Peterson and others, 2011). Many areas have been altered by grading, cuts, and fills made by humans.

2.2 Generalized Geologic Deposits

The following paragraphs provide a general description of the geologic units recognized in published geologic literature, to provide the reader with an overview of the project area. Geologic or engineering soil units are not presented on the boring logs. The designer is responsible for differentiating and evaluating the relative geotechnical properties of engineering soil units based on the data provided herein and collected by their team.

Holocene Fill is present in the project area and has been important to its development. Fill was placed by humans at various times using various placement methods. Examples include shoreline expansion and shoreline protection fills, debris, and embankment fill for I-5.

Latest Pleistocene to Holocene deposits of the Columbia River consist primarily of thick layers of sand, with minor fine-grained alluvium and gravel interbeds deposited in a fluvial environment.

Pleistocene alluvium near the project site predominantly consists of silt, sand, and gravel deposits, which include Missoula Flood deposits and material reworked by the Missoula Floods. The Pleistocene alluvium overlies the Troutdale Formation and generally consists of silt, sand, and coarse-grained material consisting of mostly basaltic gravel with cobbles, boulders, and sand lenses.

Late Miocene and Pliocene Troutdale Formation of variable composition is present across much of the Portland Basin. Near the project site, Troutdale Formation is recognized as a variably cemented conglomerate. Cobbles and boulders are present in the Troutdale Formation.

3. FIELD EXPLORATIONS

3.1 General

Field explorations were conducted by Shannon & Wilson. The following sections describe details of the exploration programs. Environmental implementations and archaeological measures were employed during the field explorations. Before each borehole was started, a steel circulation casing was pushed and/or driven to seal off any circulating drill fluids from the river. All drill cuttings and drilling fluids were contained within the borehole, the circulation casing, and the re-circulation (or "mud") tub on the barge deck. All soil cuttings and all drilling mud were collected in 55-gallon drums, which were removed from the site and disposed of by the drilling subcontractor at an appropriate facility. Turbidity monitoring was performed by Shannon & Wilson during drilling and periodic ODOT inspection of the barge was performed to confirm compliance with permitting. The IBR Team was responsible for managing the archaeological components of the exploration program. Please refer to their report for additional details.

3.2 Columbia River Bridges

Shannon & Wilson drilled six borings, designated IBR-03 through IBR-08, in the main channel of the Columbia River between November 2023 and February 2024. The locations of the borings are shown on the Site and Exploration Plan, Figure 1-2. During drilling, a Shannon & Wilson staff member was on site to locate borings, log the materials encountered, and collect soil samples. Both disturbed and undisturbed samples were collected at selected depths and continuous soil core sampling was used in some borings. The details of drilling and sampling procedures, a key to sample description terms, our logs of the materials encountered in the borings, and photographs of recovered soil core samples are presented in Appendix A, Columbia River Boring Logs and Core Photographs. Soil samples were described and identified in general accordance with the WSDOT GDM and Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), ASTM D2488. We refined our visualmanual soil descriptions and identifications based on the results of laboratory tests using elements of the Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System (USCS)), ASTM D2487. The specific terminology used in our soil descriptions is presented in Appendix A. Borehole suspension velocity logging to measure compressional and shear wave velocities of the materials encountered was performed in borings IBR-03, IBR-05, and IBR-07. Once drilling and testing were completed, all borings were backfilled with a high-solids bentonite cement grout, in accordance with Washington Department of Ecology and Oregon Water Resources Department regulations.

3.3 North Portland Harbor Bridges

Shannon & Wilson drilled two borings, designated IBR-01 and IBR-02, in the North Portland Harbor channel of the Columbia River in November 2023 and January 2024. The locations of the borings are

shown on the Site and Exploration Plan, Figure 1-3. During drilling, a Shannon & Wilson staff member was on site to locate borings, log the materials encountered, and collect soil samples. Both disturbed and undisturbed samples were collected at selected depths and continuous soil core sampling was used in one boring. The details of drilling and sampling procedures, a key to sample description terms, our logs of the materials encountered in the borings, and photographs of recovered soil core samples are presented in Appendix B, North Portland Harbor Boring Logs and Core Photographs. Soil samples were described and identified in general accordance with the ODOT GDM and ASTM D2488. We refined our visual-manual soil descriptions and identifications based on the results of laboratory tests using elements of ASTM D2487. The specific terminology used in our soil descriptions is presented in Appendix B. Borehole suspension velocity logging was performed in boring IBR-02. Once drilling and testing were completed, the borings were backfilled with a high-solids bentonite cement grout, in accordance with Oregon Water Resources Department regulations.

3.4 Sampling Limitations and Difficult Drilling

Sampling methods and drilling methods have the potential to affect the sampled material. Materials encountered in the subsurface may also create difficult drilling conditions. Below is a discussion of the factors influencing sampled material and drilling conditions. Discussions of sampling methodology, drilling techniques, and boring logs are presented in Appendix A and Appendix B.

Based on observations of the drill rig action and recovered samples, and on observations of largediameter excavations previously performed near the project site, the recovered samples from the gravel layers may not be fully representative of the in situ material. The gravel layers contain particle sizes such as cobbles and boulders larger than the diameter of conventional geotechnical samplers. These coarse gravel, cobble, and boulder clasts may be intercepted and partially sampled by a geotechnical boring but cannot be recovered and observed intact. Short drive lengths and very low sample recoveries are common with 2- to 3-inch outside diameter (O.D.) split-spoon samplers in these types of gravel layers. Rotosonic (sonic) soil core samples are capable of sampling small cobbles and coring through intercepted portions of large cobbles and boulders. However, the recovered clast sizes and distributions are still limited by the core barrel diameter.

Clasts with flat angular faces that appeared to have been freshly fractured were observed in recovered sonic core samples. Clasts that appeared to have been cut by the core barrel were also noted. Therefore, the grain size distribution curves included in the laboratory test results may include particles that were mechanically fractured or cut during drilling, suggesting smaller particle sizes than are present in the in situ material. Rotosonic drilling may also create fines as the gravel, cobbles or boulders are pulverized by the vibration and force of the drill bit. The fines are integrated into the samples and may increase the fines content of rotosonic samples which undergo grain size analysis.

Some sonic core samples appear to be segregated by grain size in the sample boxes. This segregation is often displayed by a sandy layer at the top of a run of predominantly coarse-grained gravel or by a thin up to a 1/4- to 1/2-inch layer of fines around the circumference of a sonic core sample. Based on repeated observations and the consistency of the drill action, we suspect that the vibrations induced during rotosonic drilling may mechanically sort the sample by grain size vertically and also segregate

fines to the outside of the sample. This creates sandy layers at the tops of the sonic core runs in coarser materials or a layer of fines around the circumference of the sample in both coarse-grained and sandy material. Soil samples collected for laboratory testing from the core boxes did not combine the sand layers with the adjoining gravel layers and generally included the outer layer of fines in the sand or gravel layers. There are commonly some finer-grained, sandy layers interbedded within naturally occurring gravel deposits and the observed bedding may or may not be representative of the in situ material.

During rotosonic sampling, retracting the inner core barrel may create suction at the bottom of the casing when it is withdrawn from the bottom of the borehole and retrieved through the casing for sampling. When drilling in sand, this combination of relatively low density drilling fluid and suction at the bottom of the borehole has the potential to result in heave. Heave is a condition where sand runs up into the casing due to differential water head conditions. Sand heave was encountered during rotosonic drilling in borings IBR-01 and IBR-04.

Difficult drilling conditions, including extreme mud loss, mud thinning, and hole collapse, were encountered during mud rotary drilling in borings IBR-02, IBR-03, and IBR-05.

In addition, sample recovery was sometimes difficult in both the rotosonic and mud rotary borings. In the rotosonic borings, some samples inadvertently fell out of the core barrel during retrieval and the core barrel was tripped back into the borehole to attempt to retrieve the sample. Some rotosonic core samples were not retrieved. In the mud rotary borings, some SPT samples had little or no recovery.

Difficult drilling conditions and sampling difficulties are noted on the logs in Appendix A and Appendix B. A summary of the notes from the logs is presented in Table 3-1, below.

In addition to the drilling difficulties described above, boring IBR-02 was terminated because approximately 130 feet of drill rod sheared off while drilling at 225.8 feet and the driller could not retrieve the drill bit and an approximate 1-foot section of rod from the bottom of the borehole.

Boring Designation	Depth (ft)	Comments
IBR-01	12.5	Sand heave observed in sonic casing before Sample S2.
IBR-01	23.4	Driller switched to 4-inch ID auger sonic core barrel bit.
IBR-01	33.6	Driller switched to 4-inch ID flapper sonic core barrel bit.
IBR-01	43.6	Approximately 0.8 feet of sand heave measured in sonic casing before Sample S5.

Table 3-1. Difficult Drilling Conditions and Sampling Difficulties Summary

Boring Designation	Depth (ft)	Comments			
IBR-01	53.8-64	Driller switched to 4-inch ID auger sonic core barrel bit. No recovery of Sample S6. Driller switched to 4-inch ID flapper sonic core barrel bit and attempted to retrieve sample. Still no recovery.			
IBR-01	64-74.2	No sample recovery in Sample S7.			
IBR-01	92.4	Driller switched to 4-inch ID standard sonic core barrel bit.			
IBR-01	125-127	Drill action indicates boulder from approximately 125 to 127 feet.			
IBR-01	168.7-178.7	Driller attempted 20-foot sonic core run and could only penetrate 15 feet.			
IBR-02	40-140	Driller noted borehole instability and sloughing between 40 and 140 feet.			
IBR-02	60-105	Borehole sloughing from 60 to 105 feet.			
IBR-02	109.3-162	Drill action indicates cobbles and possible boulders from 109.3 to 162 feet.			
IBR-02	110.9	No sample recovery in Sample N23.			
IBR-02	113-140	Lost drilling mud circulation at 113 feet. Occasional drilling mud circulation loss from 113 to 140 feet.			
IBR-02	121.5	Borehole sloughing at 121.5 feet.			
IBR-02	130-140	Lost drilling mud circulation and approximately 350 gallons of drilling mud loss from 130 to 140 feet. Driller used another 250 gallons of thick mud to attempt to regain circulation. Borehole sloughed and driller pulled rods to drill back down to 140 feet.			
IBR-02	140-150	Approximately 1200 gallons of drilling mud loss from 140 to 150 feet.			
IBR-02	150-160	Approximately 300 gallons of drilling mud loss from 150 to 160 feet.			
IBR-02	160-170	Approximately 300 gallons of drilling mud loss from 160 to 170 feet.			

Boring Designation	Depth (ft)	Comments
IBR-02	165-170	Drill action indicated intermittent cobbles from 165 to 170 feet.
IBR-02	170-180	Approximately 300 gallons of drilling mud loss from 170 to 180 feet.
IBR-02	180-190	Approximately 100 gallons of drilling mud loss from 180 to 190 feet.
IBR-02	187-215	Drill action indicates intermittent cobbles from 187 to 215 feet.
IBR-02	190-210	Approximately 50 gallons of drilling mud loss from 190 to 210 feet.
IBR-02	210-220	Approximately 300 gallons of drilling mud loss from 210 to 220 feet.
IBR-02	215-225.8	Drill action indicates cobbles and possible boulders from 215 to 225.8 feet.
IBR-02	225.8	Approximately 130 feet of drill rod sheared off in the borehole when drilling at 225.8 feet. Driller retrieved all but 1-foot section of rod and the bit from the bottom of the borehole. Boring terminated.
IBR-03	0-28	Slow continuous loss of drilling mud from 0 to 28 feet. Driller added grout.
IBR-03	5.7	Poor recovery in Sample N-1.
IBR-03	21-26	Approximately 50 gallons of drilling mud loss from 21 to 26 feet.
IBR-03	26-31	Approximately 50 gallons of drilling mud loss from 26 to 31 feet.
IBR-03	38.7	Bottom of Shelby tube damaged during sampling at 38.7 feet.
IBR-03	60-80	Driller noted borehole instability from 60 to 80 feet.
IBR-03	110-160	Driller noted borehole instability from 110 to 160 feet.
IBR-03	125	Borehole instability at 125 feet.
IBR-03	190-210	Lost drilling fluid circulation from 190 to 210 feet.

Boring Designation	Depth (ft)	Comments
IBR-03	217.5	Drill chatter at 217.5 feet.
IBR-03	225	Approximately 100 gallons of drilling mud loss at 225 feet.
IBR-03	232-240	Cobbles inferred from drill action from 232 to 240 feet.
IBR-03	270-271	Boulder inferred from drill action from 270 to 271 feet.
IBR-03	271-280	Cobbles inferred from drill action from 271 to 280 feet.
IBR-03	294-300	Cobbles inferred from drill action from 294 to 300 feet.
IBR-04	10	Sand heave observed in sonic casing before Sample SC-2.
IBR-04	29.5-38.6	Approximately 4.5 feet of sand heave measured in sonic casing before Sample SC-4. Sample SC-4 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample.
IBR-04	47.8-57.8	Approximately 8 feet of sand heave measured in sonic casing before Sample SC-6. Sample SC-6 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample.
IBR-04	70.7-79.8	Sample SC-8 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample.
IBR-04	79.8	Driller switched to 4-inch ID flapper sonic core barrel bit.
IBR-04	89.3	Sand heave observed in sonic casing before Sample SC-10.
IBR-04	120.6	A portion of Sample SC-11 was recovered with Sample SC-12.
IBR-04	130.8	Sand heave observed in sonic casing before Sample SC-13.
IBR-04	140.3	Approximately 9 feet of sand heave measured in sonic casing after Sample SC-13. Driller added bentonite grout to borehole to reduce sand heave.
IBR-04	150.6	Driller switched to 4-inch ID basket sonic core barrel bit.

Boring Designation	Depth (ft)	Comments		
IBR-04	160.8	Driller switched to 4-inch ID auger sonic core barrel bit.		
IBR-04	170.7-179.6	Driller switched to 4-inch ID flapper sonic core barrel bit. Sample SC-17 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample.		
IBR-04	189-199.6	Driller switched to 4-inch ID standard sonic core barrel bit. No sample recovery in Sample SC-19.		
IBR-05	60-110	Driller noted borehole instability from 60 to 110 feet.		
IBR-05	175	Lost all drill mud at 175 feet.		
IBR-05	192	Drill chatter at approximately 192 feet.		
IBR-05	192-224	Cobbles inferred from intermittent drill chatter from 192 to 224 feet.		
IBR-05	224-237	Cobbles inferred from drill action from 224 to 237 feet.		
IBR-06	12.4-23.1	Poor recovery in Sample SC-2.		
IBR-06	33.4	Driller switched to 4-inch flapper sonic barrel bit.		
IBR-06	123.9-143.4	Driller switched to 4-inch ID auger sonic core barrel bit. Sample SC-9 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample.		
IBR-06	191.1-192.6	Boulder inferred from drilling action from 191.1 to 192.6 feet.		
IBR-07	67.8	Performed Dames & Moore sample after N-15 to obtain additional material.		
IBR-07	73.0	Performed Dames & Moore sample after N-16 to obtain additional material with no recovery.		
IBR-07	78.2	Performed Dames & Moore sample after N-17 to obtain additional material with no recovery.		

Boring Designation	Depth (ft)	Comments
IBR-07	83.5	Performed Dames & Moore sample after N-18 to obtain additional material with no recovery.
IBR-07	88-110	Cobbles inferred from drill action from 88 to 110 feet.
IBR-07	91-93	Boulder inferred from drill action from approximately 91 to 93 feet.
IBR-07	94.2	Performed Dames & Moore sample after N-20 to obtain additional material with no recovery.
IBR-07	98.4	No recovery of Sample N-21. Performed Dames & Moore sample after N- 21 to obtain additional material with no recovery.
IBR-07	108.1	No recovery of Sample N-22. Performed Dames & Moore sample after N-22 to obtain additional material with no recovery.
IBR-07	117.1	Performed Dames & Moore sample after N-23 to obtain additional material with no recovery.
IBR-07	120-133.8	Cobbles inferred from drill action from 120 to 133.8 feet.
IBR-07	127	Driller notes very hard drilling at 127 feet.
IBR-08	47.1-67	Suspected grain-size segregation from sonic vibration in samples SC-6 and SC-7.
IBR-08	64.4-65.4	Boulder inferred from drilling action from 64.4 to 65.4 feet.
IBR-08	87.5-88.1	Cobble inferred from drilling action from 87.5 to 88.1 feet.
IBR-08	94-95.5	Boulder inferred from drilling action from 94 to 95.5 feet.
IBR-08	96	Driller noted very hard drilling at 96 feet.

Note: See logs in Appendix A and Appendix B for additional information and notes.

4. LABORATORY TESTING

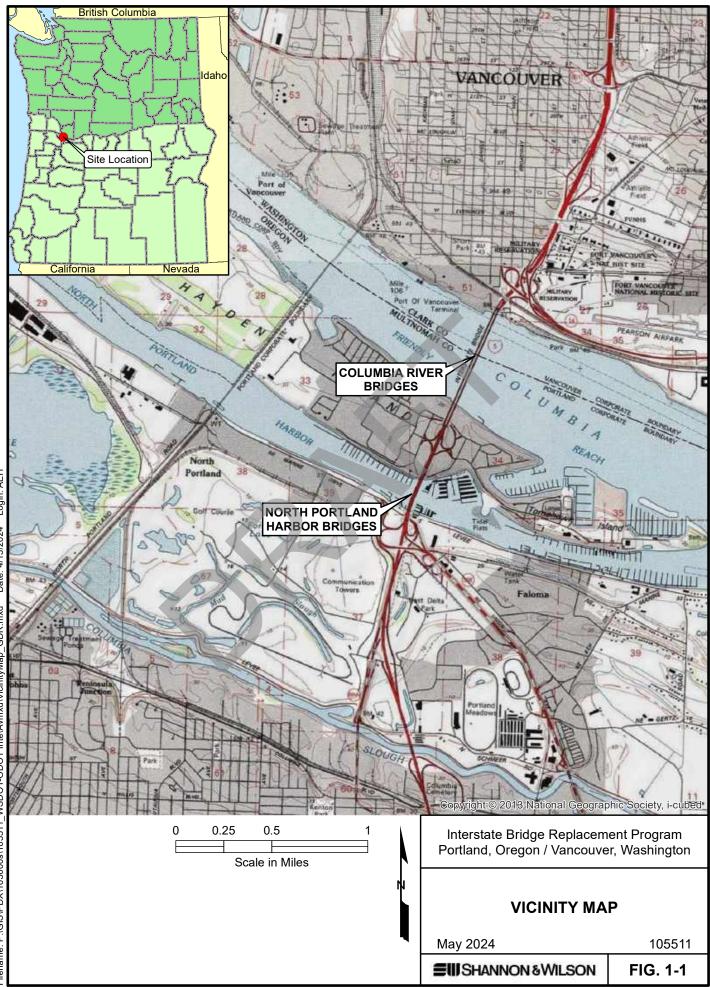
The samples we obtained during our field explorations were transported to our laboratory for further examination. We then selected representative samples for a suite of laboratory tests. The overall soil-testing program included visual-manual identifications and descriptions, moisture content analyses, Atterberg Limits tests, particle-size analyses, and analytical testing for corrosivity potential. All tests were performed in accordance with applicable ASTM International test standards. The results of the laboratory tests and a brief description of the test procedures are presented in Appendices D and E for the Columbia River and North Portland Harbor Bridges, respectively.

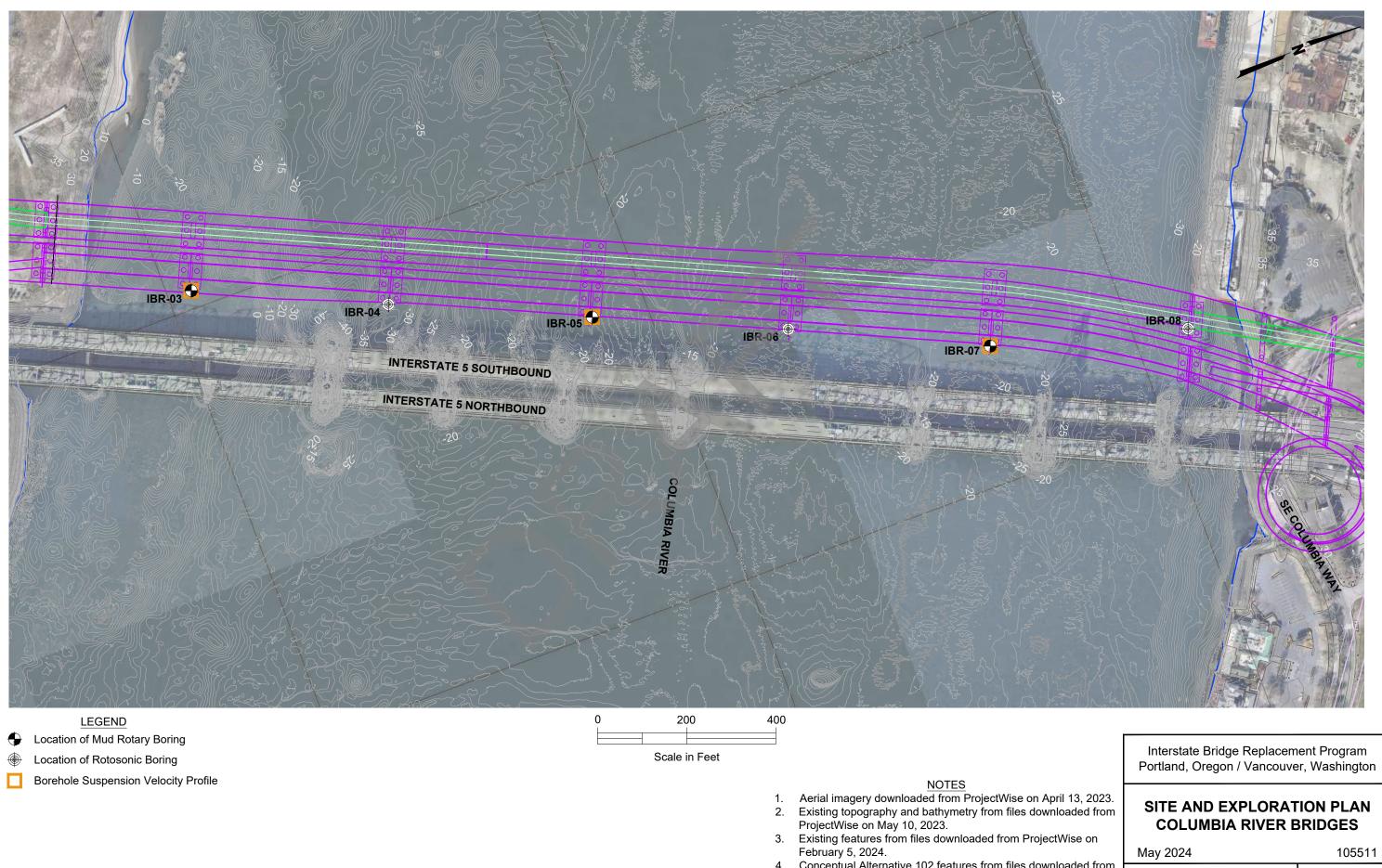
5. LIMITATIONS

This Geotechnical Data Report provides a compilation of field and laboratory data collected for use by the design and construction teams for the Interstate Bridge Replacement Program. No engineering analyses, conclusions, or design recommendations are contained in this report. This report was prepared for the exclusive use of the IBR Team, WSDOT, and ODOT for the Interstate Bridge Replacement Program. It should be made available to prospective contractors for use as factual data only. It does not represent a warranty of subsurface conditions.

The data contained herein are based upon site conditions as they existed during the time of our subsurface exploration program. Additionally, the explorations provide information only about the subsurface conditions at the drilled locations at the time of drilling using the means and methods described in this report. It cannot be assumed that the subsurface conditions throughout the project area are similar to those disclosed by the explorations. Within the limitations of the scope, schedule, and budget, the data presented in this report were collected and presented in accordance with generally accepted professional geotechnical practice in this area at the time this report was prepared. No other warranty, expressed or implied, is made. Additional geotechnical explorations may be required to meet the requirements of the applicable Geotechnical Design Manual (GDM) for final design of the project features.

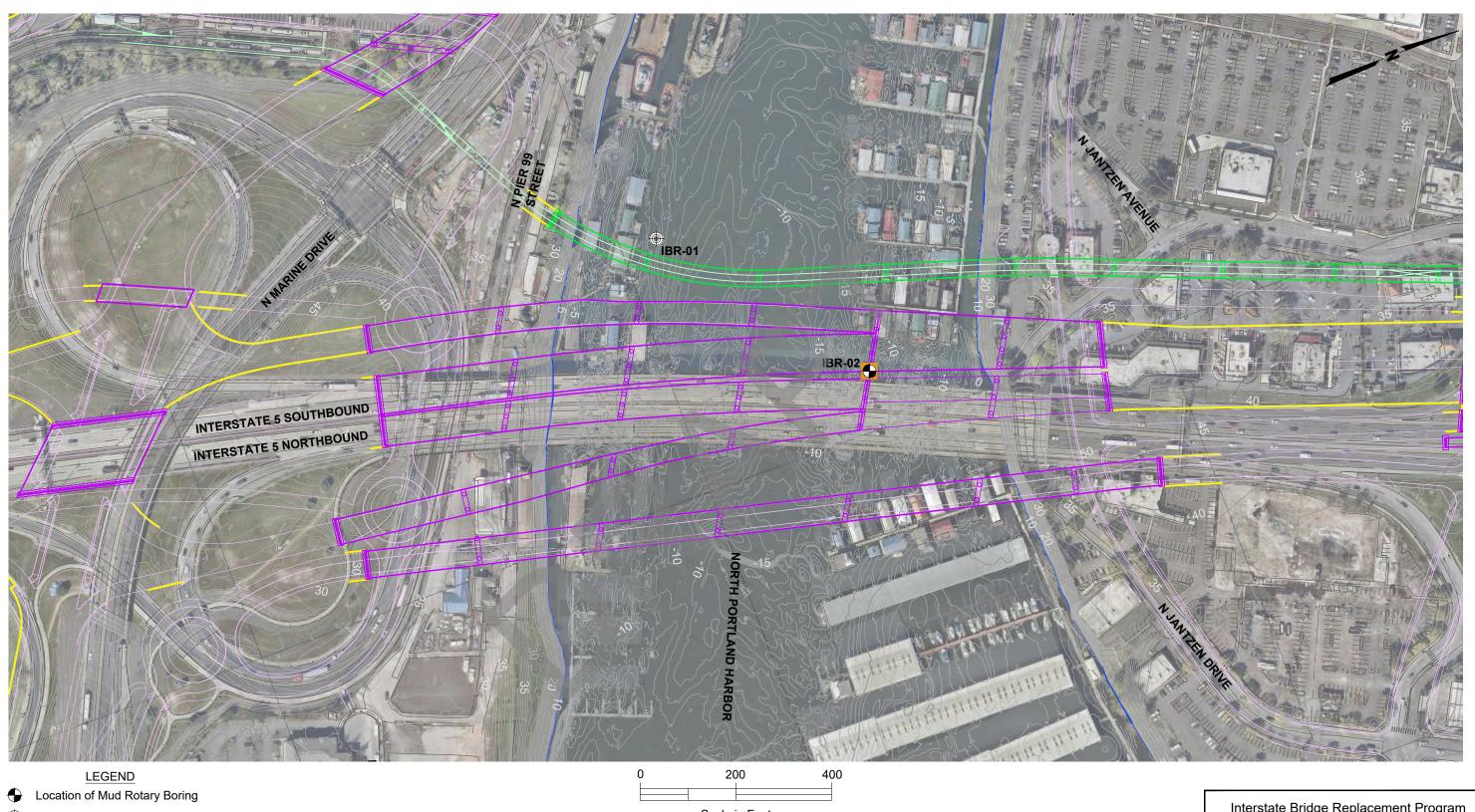
If there is substantial lapse of time between the submission of this report and completion of the final design and the start of work at the site, or if conditions have changed because of natural or manmade forces, we recommend that this report be reviewed with respect to the changed conditions or the time lapse.


The scope of our geotechnical services did not include environmental site assessments or evaluations regarding the presence or absence of hazardous or toxic materials in the soil, surface water, groundwater, or air, on or below the site, or for evaluation or disposal of contaminated soils or groundwater associated with construction, should any be encountered, except as noted in this report.


Appendix F includes a document, "Important Information About Your Geotechnical/Environmental Report," to assist you and others in understanding the use and limitations of geotechnical documents.

6. **REFERENCES**

- Allen, J.E., Burns, M., and Burns, S., 2009, Cataclysms on the Columbia: The Great Missoula Floods (2nd ed.): Portland, OR, Ooligan Press, 204 p.
- American Association of State Highway and Transportation Officials (AASHTO), 1988, Manual on subsurface investigations: Washington, D.C, AASHTO, 1 v.
- ASTM International, 2020, Standard practice for classification of soils for engineering purposes (unified soil classification system), D2487-17e1: West Conshohocken, Pa., ASTM International, Annual book of standards, v. 04.08, soil and rock (I): D420 - D5876, 10 p., available: www.astm.org.
- ASTM International, 2018, Standard practice for description and identification of soils (visual/manual procedure), D2488-17e1: West Conshohocken, Pa., ASTM International, Annual book of standards, v. 04.08, soil and rock (I): D420 D5876, 13 p., available: www.astm.org.
- Beeson, M.H., Tolan, T.L., and Madin, I.P., 1991, Geologic Map of the Portland Quadrangle, Multnomah and Washington Counties, Oregon, and Clark County, Washington: Oregon Department of Geology and Mineral Industries, Geological Map Series GMS-75, scale 1:24,000.
- Oregon Department of Transportation (ODOT), 2023, Geotechnical Design Manual: Salem, OR, available: https://www.oregon.gov/ODOT/GeoEnvironmental/Pages/Geotech-Manual.aspx.
- Peterson, C.D., Minor, R., Peterson, G.L., and Gates, E.B., 2011, Pre- and Post-Missoula Flood Geomorphology of the Pre-Holocene Ancestral Columbia River Valley in the Portland Forearc Basin, Oregon and Washington, USA: Geomorphology 129 (3-4): 276.
- Washington State Department of Transportation (WSDOT), 2022, M 46-03, Geotechnical Design Manual: Olympia, WA, available: https://wsdot.wa.gov/Publications/Manuals/M46-03.htm.



Conceptual Alternative 102 features from files downloaded from ProjectWise on February 5, 2024.

EIIISHANNON & WILSON

FIG. 1-2

- ۲ Location of Rotosonic Boring
- Borehole Suspension Velocity Profile

Scale in Feet

- <u>NOTES</u>
 Aerial imagery downloaded from ProjectWise on April 13, 2023.
 Existing topography and bathymetry from files downloaded from ProjectWise on May 10, 2023.
 Existing features from files downloaded from ProjectWise on Extension 5, 2024.
- February 5, 2024.
- Conceptual Alternative 102 features from files downloaded from ProjectWise on February 5, 2024.

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

SITE AND EXPLORATION PLAN NORTH PORTLAND HARBOR BRIDGES

May 2024

EWSHANNON & WILSON

105511

FIG. 1-3

APPENDIX A. COLUMBIA RIVER BORING LOGS AND CORE PHOTOGRAPHS TABLE OF CONTENTS

1.	GENERAL	A-1	
2.	DRILLING OVERVIEW		
3.	GEOTECHNICAL DRILLING AND SAMPLING METHODOLOGY	A-2	
3.1	Mud Rotary Drilling Technique	A-2	
	3.1.1 Standard Penetration Test (SPT) Sampling	A-2	
	3.1.2 Geotechnical Relatively Undisturbed Sampling	A-3	
3.2	Rotosonic Drilling Technique	A-3	
	3.2.1 Rotosonic Continuous Sampling	A-3	
4.	BOREHOLE ABANDONMENT	A-4	
5.	MATERIAL DESCRIPTIONS	A-4	
6.	BORING LOGS AND CORE PHOTOGRAPHS	A-4	

TABLES

Table A-1. Columbia River Drilling Summar	yA-1
---	------

ATTACHMENTS

Logs of Borings and Core Photographs Boring IBR-03 Boring IBR-04 Boring IBR-05 Boring IBR-06 Boring IBR-07 Boring IBR-08

1. GENERAL

Shannon & Wilson drilled six geotechnical borings in the main channel of the Columbia River for the IBR Project. Boring logs and core photographs from the two borings drilled in North Portland Harbor are presented separately in Appendix B. All borings were drilled from a barge over water. Table A-1 summarizes exploration designation, borehole coordinates, depth, and other details. The borings were completed between November 7, 2023, and February 23, 2024. All borings were surveyed during drilling by the design team relative to the IBR Project's Local Datum Plane (LDP) system. Elevations for the project are North American Vertical Datum of 1988 (NAVD88). Exploration locations are shown on the Site and Exploration Plan, Figure 1-2.

This appendix describes the techniques used to advance and sample the borings, presents logs of the materials encountered during drilling, and details the borehole backfill. Downhole suspension velocity testing was also conducted in each of the three mud rotary borings. These tests are described with their results in Appendix C, Borehole Suspension Logging Results.

Exploration Designation	0	Easting (ft) ^A	Mudline Elevation (ft) ^B	Total Depth (ft)	Drilling Method	Start Date	End Date
IBR-03	110582.3	1083179.1	-0.53	300.3	Mud Rotary	1/29/2024	2/9/2024
IBR-04	110986.4	1083359.0	-29.7	250.0	Rotosonic	11/7/2023	11/13/2023
IBR-05	111405.1	1083544.5	-21.9	261.0	Mud Rotary	2/13/2024	2/23/2024
IBR-06	111808.0	1083722.7	-18.5	237.2	Rotosonic	11/28/2023	11/29/2023
IBR-07	112219.6	1083915.4	-23.1	133.8	Mud Rotary	1/3/2024	1/8/2024
IBR-08	112649.2	1084033.3	-25.0	110.9	Rotosonic	11/14/2023	11/15/2023

Table A-1. Columbia River Drilling Summary

Notes:

A IBR Project LDP, defined as Washington State Plane South/1.0000576 (US Survey Feet)

B NAVD88 (US Survey Feet)

2. DRILLING OVERVIEW

The geotechnical borings were drilled with two drill rigs provided and operated by Western States Soil Conservation, Inc. (Western States), of Hubbard, Oregon. The borings were drilled from a floating barge that was provided and operated by Mark Marine Service, Inc., of Washougal, Washington. Three borings were drilled using mud rotary techniques and three borings were drilled using rotosonic

techniques. Drilling supervision, including sample collection and field logging of subsurface material, was performed by Shannon & Wilson.

3. GEOTECHNICAL DRILLING AND SAMPLING METHODOLOGY

3.1 Mud Rotary Drilling Technique

For mud rotary drilling performed over water, before the borehole is started, a steel circulation casing is pushed and/or driven to a depth of approximately 10 to 15 feet below the mud line (or more depending on conditions), sealing off any circulating drill fluids from the river. Often, the circulation casing is pushed to refusal using the drill rig hydraulic system or driven with a casing hammer. Once the casing is sealed below the mud line, the boring is advanced using a tri-cone bit and a string of hollow drill rods (narrower than the bit) through which bentonite drilling mud is pumped. The mud is mixed on site using water and powdered bentonite. The drilling mud serves to cool the bit, keep the hole open, and flush the cuttings to the surface. Returning drill mud is typically passed through the circulation casing from the borehole to a screen and tub that is situated over the circulation casing on the deck of the barge. The screen collects the drill cuttings from the borehole, and the tub collects the mud for recirculation back into the hole. If fine-grained, cohesive soils are encountered, other styles of drill bits may also be used with the mud-rotary method, such as scraper or drag bits.

3.1.1 Standard Penetration Test (SPT) Sampling

Disturbed samples were collected in the mud rotary borings at 2-, 5-, or 10-foot intervals using a standard 2-inch outside-diameter (O.D.) split spoon sampler in conjunction with Standard Penetration Testing. In a Standard Penetration Test (SPT), ASTM D1586, the sampler is driven 18 inches into the soil using a 140-pound hammer dropped 30 inches. The number of blows required to drive the sampler the last 12 inches is defined as the standard penetration resistance, or N-value. The SPT N-value provides a measure of in situ relative density of cohesionless soils (silt, sand, and gravel) and the consistency of cohesive soils (silt and clay). In some instances, a 3-inch-O.D. Dames & Moore sampler was used to collect disturbed samples. A 140-pound hammer was used to drive these larger-diameter samplers. All disturbed samples were visually identified and described in the field at the time of sampling, sealed in a labeled plastic jar or bag to retain moisture, and returned to the laboratory for additional examination and testing.

SPT N-values can be significantly affected by several factors, including the efficiency of the hammer used. Measured efficiencies of the automatic hammers used for this project, based on available information we received from our drilling subcontractor, are shown on the boring logs. The field recorded N-values are summarized on the boring logs. For any non-standard sized sampler, the field recorded N-value was corrected back to an SPT value per the AASHTO Manual on Subsurface Investigations (1988). Field recorded N-values, shown numerically on the logs, have not been corrected for hammer efficiency, overburden pressure, flexure of the rods, or silt content. N-values

corrected only for sampler size and hammer energy are shown graphically on the boring logs as N_{60} values. An SPT was considered to have met refusal where more than 50 blows were required to drive the 2-inch-O.D. sampler 6 inches (100 blows for larger-O.D. samplers). In this case, the blows are reported as 50 over the distance driven in 50 blows, such as 50/4". Sample recovery is identified as a percentage of material retained for the length the sampler was driven.

3.1.2 Geotechnical Relatively Undisturbed Sampling

Relatively undisturbed samples were collected in some mud rotary borings in 3-inch-OD thin-wall Shelby tubes, which were hydraulically pushed into the undisturbed soil at the bottoms of boreholes. The soils exposed at the ends of the tubes were examined and described in the field. After examination, the ends of the tubes were sealed to preserve the natural moisture of the samples. The sealed tubes were stored in the upright position, and care was taken to avoid shock and vibration during their transport and storage in the laboratory.

3.2 Rotosonic Drilling Technique

During rotosonic drilling, also referred to as sonic rotary drilling, an inner core barrel is rotated while an oscillator in the drill head imposes a high frequency vibration into the drill rods and core barrel. This forces the core barrel and drill bit to be physically vibrating up and down in addition to being forced down and rotating. These three forces, vibration, rotation, and downward force combine to advance the core barrel through soil or bedrock. As the core barrel is advanced the center fills with the soil or rock it is being advanced through. When the core barrel is advanced a certain distance determined by the length of the core barrel it is stopped. An over-casing is advanced over the outside of the core barrel to the same depth as the core barrel tip using the same sonic vibration, rotation, and downward force. The over casing protects the borehole integrity and prevents the borehole from collapsing as the core barrel is retrieved. Multiple over casings may be used to maintain borehole integrity and reduce the outside forces on the inner core barrel and inner casings. The inner core barrel is retracted to the surface where it is emptied into long cylindrical bags as a long soil core or rock core sample. This alternating process of core barrel and over casing advancement with core barrel retrieval is continued to the terminal depth of the borehole.

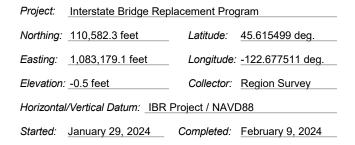
3.2.1 Rotosonic Continuous Sampling

To retrieve a core sample, the core barrel is withdrawn from the hole and the sample is extruded into tubular plastic bags using vibration. During this exploration program, the boreholes were advanced in five- to twenty-foot intervals while continuously core sampling. The bags of approximately 4- to 6- inch diameter core were placed into wooden boxes and logged and photographed by a Shannon & Wilson geology staff member. Due to disturbance to the soil column during drilling and bagging of the sample, sample recoveries and discreet grab sample depths should be considered approximate.

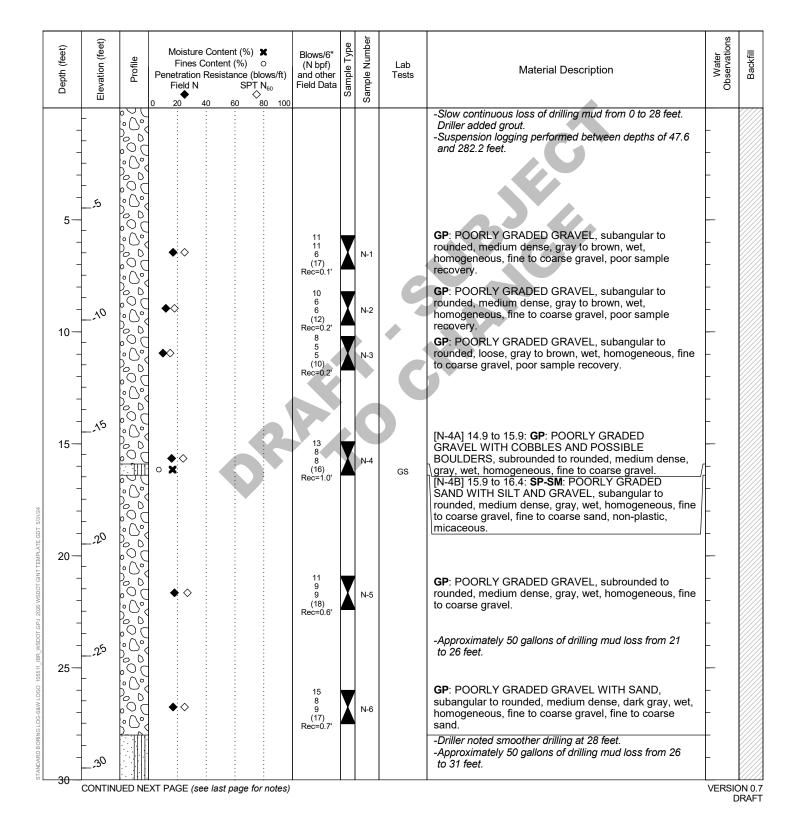
4. BOREHOLE ABANDONMENT

Once drilling and testing were completed, all borings were backfilled with a high-solids bentonite cement grout, in accordance with Washington Department of Ecology and Oregon Water Resources Department regulations.

5. MATERIAL DESCRIPTIONS


In the field, soil samples were described and identified in accordance with Chapter 4 of the WSDOT Geotechnical Design Manual (2022). The ASTM International (ASTM) D2488 Visual-Manual method was also used as a guide in determining the key diagnostic properties of soils. Consistency, color, relative moisture, degree of plasticity, peculiar odors, and other distinguishing characteristics of the samples were noted. Once returned to the laboratory, the samples were re-examined, various standard laboratory tests were conducted, and the field descriptions and identifications were modified where necessary. We refined our visual-manual soil descriptions and identifications based on the results of the laboratory tests, using elements of the Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM D2487. Please refer to the WSDOT Geotechnical Design Manual (2022) and ASTM D2487 for definitions of descriptive terminology used in the boring logs.

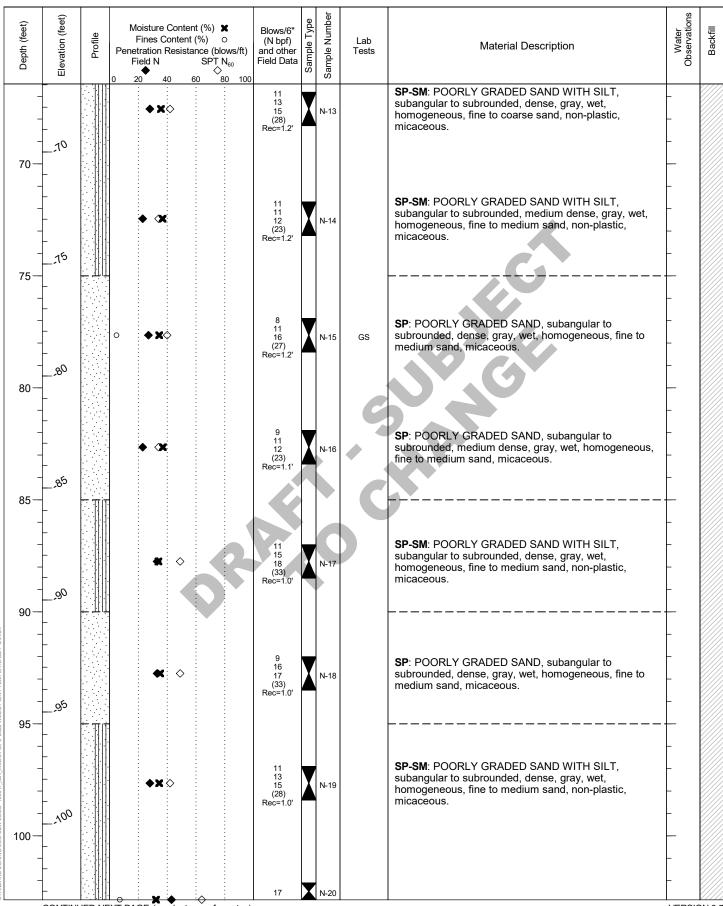
The WSDOT Geotechnical Design Manual does not provide quantification of cobble and/or boulder constituents, instead only indicates their presence. Cobbles are defined as "particles of rock that will pass a 12-inch square opening and be retained on a 3-inch sieve" and boulders are defined as "particles of rock that will not pass a 12-inch square opening." The soil group name in ASTM D2487 and D2488 is based on the portion of the soil sample passing the 3-inch sieve. Refer to the photographs of samples obtained through rotosonic core drilling for estimating the quantities of cobble/boulder constituents recovered from those explorations. It should be noted that the samples presented in the photographs have been disturbed and the finer- and coarser-grained fractions can be segregated during drilling, sampling, and handling.


6. BORING LOGS AND CORE PHOTOGRAPHS

Summary logs of the borings are attached to this appendix. Logs of borings that included soil coring are followed by core photographs. Soil descriptions and interfaces on the logs are interpretive and actual changes may be gradual. The left-hand side of the drill logs provides depth and elevation with a graphic log. The center of the log shows individual sample intervals and identifications, feet recovery, Standard Penetration Test data, natural moisture contents, fines contents, and a list of laboratory tests. The right-hand portion provides material descriptions, miscellaneous comments, and a graphic depicting hole backfill details.

LOG OF BORING IBR-03

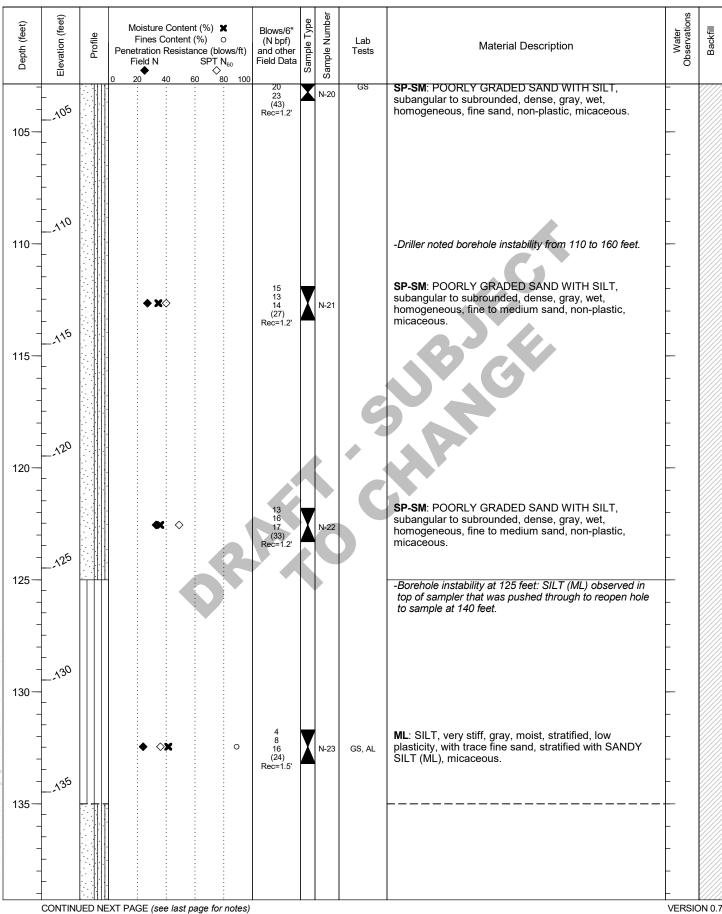
Job Number: Y-1	2435 Route & MP Range:	SR 005 MP 0.00 -	0.30
Driller/Inspector:	Adonis&Ray&Richard (Weste	ern States) / Connc	or McCord (S&W)
Start Card: N/A			
Drilling Method:	Mud Rotary	Hole Diam.:_	5.5 in
Equipment:CN	/IE-850XR Track Rig (ID:4176	12) Rod Type:_	NWJ
Hammer Type:	AutoHammer	Historic Efficiency:_	89.4%


LOG OF BORING IBR-03

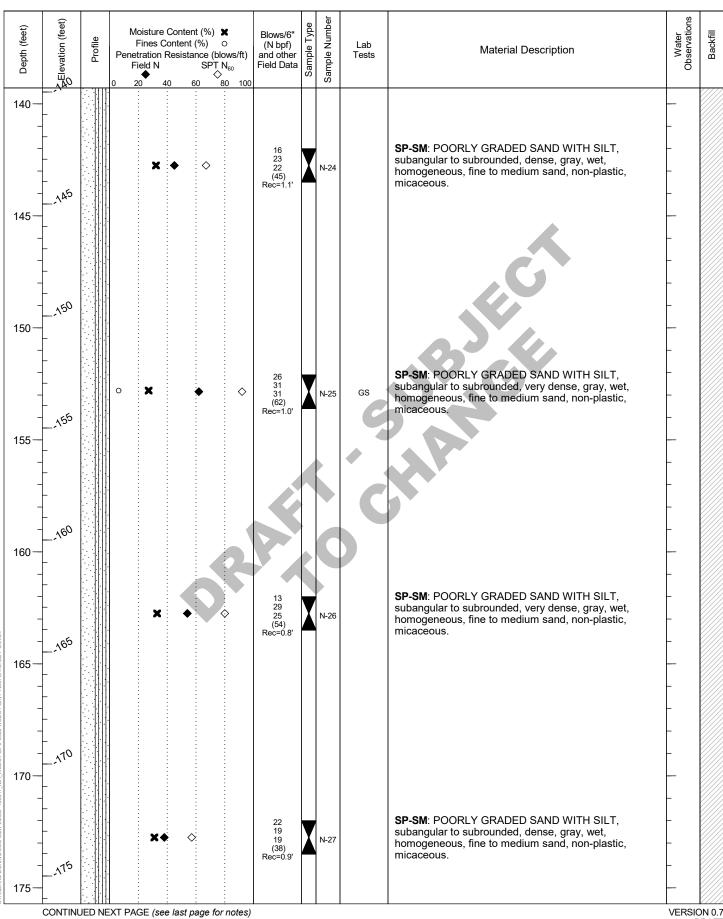
Project: Interstate Bridge Replacement Program

Depth (feet)	Elevation (feet)	Profile	Moisture Content (%) ★ Fines Content (%) ○ Penetration Resistance (blows/ff Field N SPT N ₆₀ ○ 0 20 40 60 80 11	Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
			• • * *	12 8 10 (18) Rec=0.8'	X	N-7	GS	SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, medium dense, gray, wet, homogeneous, fine to coarse sand, non-plastic, micaceous.	-	
35-	35 			13 12 5 (17) Rec=0.2'	X	N-8	GS	SM : SILTY SAND WITH GRAVEL, subangular to rounded, medium dense, gray to brown, wet, homogeneous, fine gravel, fine to coarse sand, low to medium plasticity, micaceous.	-	
40-	0		• •	Rec=0.8'	Y	U-1 N-9		SM: SILTY SAND, subangular to rounded, gray to brown, moist to wet, stratified, fine to coarse sand, non-plastic to low plasticity, stratified with SANDY SILT (ML), micaceous. -Bottom of shelby tube damaged. Gravel inferred from drill action from 39.5 to 40.5 feet. SM: SILTY SAND, subangular to rounded, medium dense, gray to brown, moist to wet, stratified, fine to	-	
45-				(24) Rec=1.3'		14-0	G	SANDY SILT (ML), micaceous.	-	
50-	- - - - - - - - -		 ◆ <x< li=""> </x<>	9 10 (20) Rec=1.2'		N-10	C	SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, medium dense, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous.	-	
- - - - - - - - - - - - - - - - - - -	- - - - - - - -								-	
57165			• • •	14 16 17 (33) Rec=1.0'	X	N-11	GS	SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, dense, gray, wet, homogeneous, fine to coarse sand, non-plastic, micaceous.	-	
60-	0 <u>0</u>							-Driller noted borehole instability from 60 to 80 feet.		
517NDARD BORING LOG-S&W LOGO 105511_IBR.	- - - - - - - - - - - - - -		• • •	16 12 13 (25) Rec=1.2'	X	N-12		SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, dense, gray, wet, homogeneous, fine to coarse sand, non-plastic, micaceous.	-	
STANDAF			EXT PAGE (see last page for note	s)					- VERSIC	ON 0.7

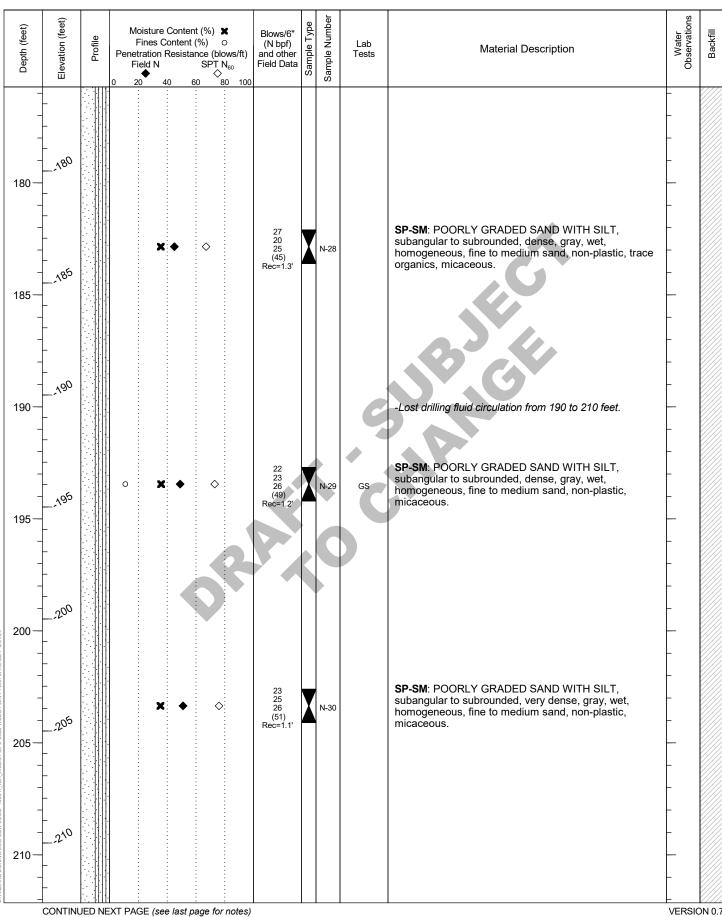
LOG OF BORING IBR-03


Project: Interstate Bridge Replacement Program

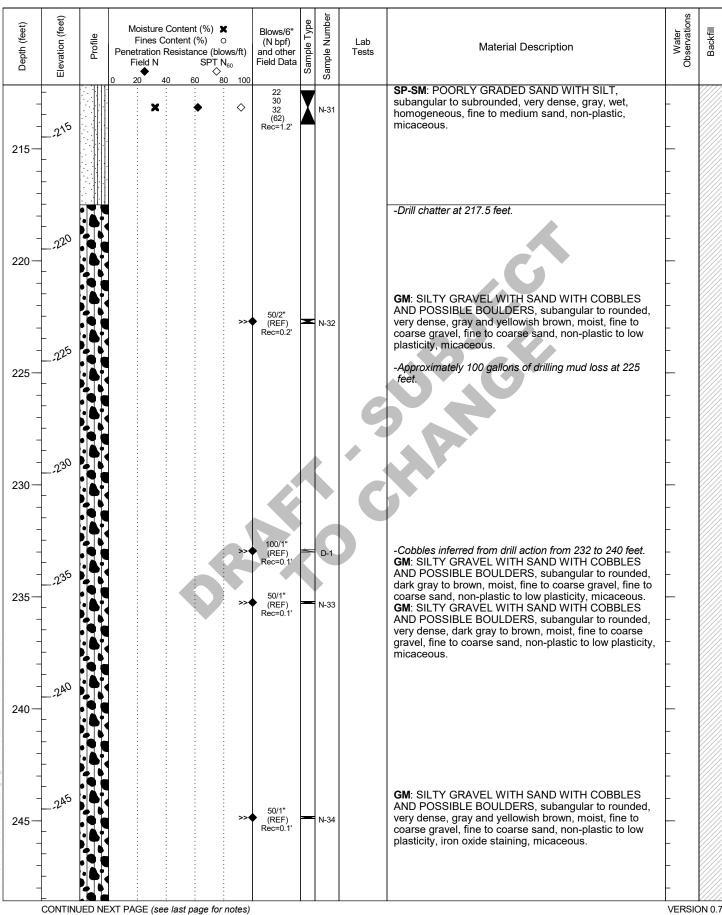
EIIISHANNON & WILSON


LOG OF BORING IBR-03

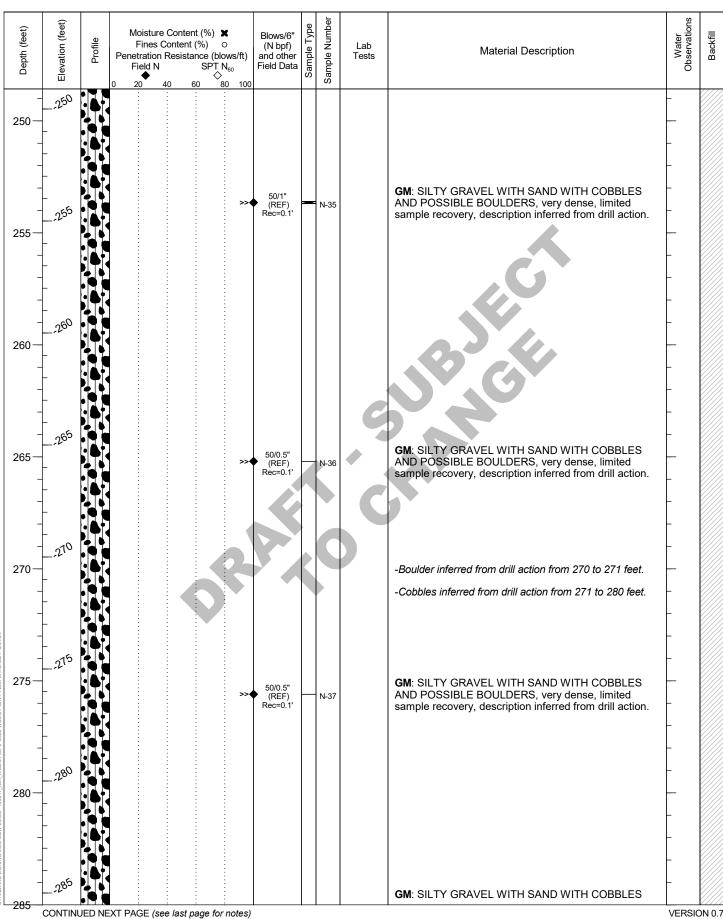
Project: Interstate Bridge Replacement Program


LOG OF BORING IBR-03

Interstate Bridge Replacement Program Project:


LOG OF BORING IBR-03

Interstate Bridge Replacement Program Project:


LOG OF BORING IBR-03

Project: Interstate Bridge Replacement Program

LOG OF BORING IBR-03

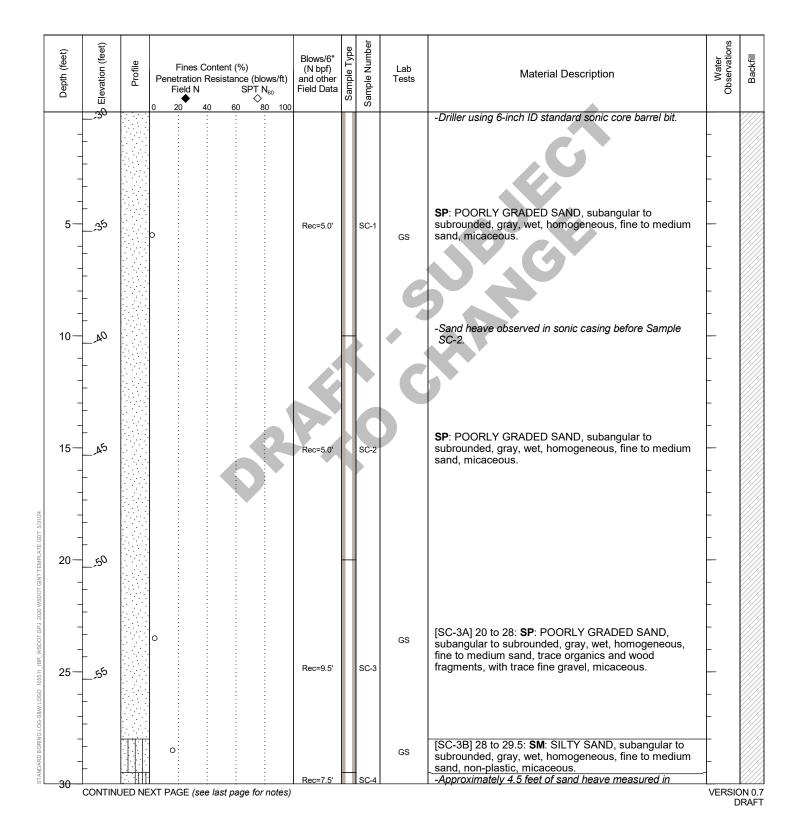
Project: Interstate Bridge Replacement Program

LOG OF BORING IBR-03

Project: Interstate Bridge Replacement Program

Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Moisture Content (%) \mathbf{X} Fines Content (%) \circ Penetration Resistance (blows/ft) Field N SPT N ₆₀ \circ 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
			×	50/0.5" (REF) Rec=0.1'		N-38		AND POSSIBLE BOULDERS, angular to rounded, very dense, gray, reddish brown, and yellowish brown, moist, fine to coarse gravel, fine to coarse sand, non-plastic to low plasticity, iron oxide staining, micaceous.		
290-	290 								-	
295-	295 295 							-Cobbles inferred from drill action from 294 to 300 feet.	-	
300-				50/0"			C	SCE	-	
	HOLE E	NDED	AT 300.3 FEET ON 2-9-2024	(REF) Rec=0.0'		\N-39		NO RECOVERY		


NOTES:

- 1. This is a summary log of the boring. Soil/rock descriptions are derived from visual field identifications and laboratory test data (where tested). See exploration log legend for explanation of graphics and abbreviations.
- 2. The implied accuracy of the location information displayed on this log is typically sub-meter (X,Y) when collected using GPS methods by the Geotechnical Office and sub-centimeter (X,Y,Z) when collected by the Region survey crew.
- 3. Where oversized samplers were used, a correction was made to the N-value per the AASHTO Manual on Subsurface Investigations, 1988. Blow counts per 6-inch increment have not been corrected.
- 4. The groundwater level(s), if shown, represents observations made during drilling. The groundwater level should be considered approximate and will vary based on seasonal and other effects.

LOG OF BORING IBR-04

Project: _	nterstate Bridge Replac	ement Prog	jram
Northing: 1	110,986.4 feet	Latitude:	45.616624 deg.
Easting: 1	1,083,359.0 feet	Longitude:	-122.676835 deg.
Elevation: _	·29.7 feet	Collector:	Region Survey
Horizontal/\	Vertical Datum: <u>IBR Pro</u>	oject / NAVE	088
Started: N	November 7, 2023	Completed:	November 13, 2023

Job Number: Y-1	Job Number: Y-12435 Route & MP Range: <u>SR 005 MP 0.00 - 0.30</u>											
Driller/Inspector: Alex McCann (Western States) / Connor McCord (S&W)												
Start Card: N/A												
Drilling Method:	Sonic Rotary	<i>Hole Diam.:</i> _8 & 6 in										
Equipment: Ge	oprobe 8150LS Sonic Track Rig	Rod Type:_N/A										
Hammer Type:	N/A											

LOG OF BORING IBR-04

Project: Interstate Bridge Replacement Program

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{60} 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
				Rec=7.5'		SC-4		sonic casing before Sample SC-4. SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous. -Sample SC-4 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample.	-	
40			O	Rec=9.2'		SC-5	GS	SP-SM: POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to coarse sand, non-plastic, with trace fine gravel, micaceous.	-	
- 50 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			Rec=10.0'		SC-6	GS	[SC-6A] 47.8 to 53: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous. -Sample SC-6 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample. [SC-6B] 53 to 57.8: SP : POORLY GRADED SAND,	-	
				Rec=12.9'		SC-7		subangular to subrounded, gray, wet, homogeneous, fine to medium sand, micaceous. [SC-7A] 57.8 to 64: SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, micaceous.	-	
	95 95 	UED N	The set of				GS	[SC-7B] 64 to 70.7: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous.	VERSIQ	ON 0.7

LOG OF BORING IBR-04

Project: Interstate Bridge Replacement Program

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{60} 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
				Rec=12.9'		SC-7		[SC-7B] 64 to 70.7: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous.	-	
				Rec=9.1'		SC-8		 [SC-8A] 70.7 to 75: SP-SM: POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous. -Sample SC-8 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample. [SC-8B] 75 to 79.8: SP: POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, 	-	
- - 80 -			0				GS	-Driller switched to 4-inch ID flapper sonic core barrel bit.	-	
85-	- - - - - - - - - - - -			Rec=9,5'		SC-9	C	[SC-9A] 79.8 to 86: SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, micaceous. [SC-9B] 86 to 89.3: SP-SM : POORLY GRADED	-	
- - 06	- 120							SAND WITH SILT, subangular to subrounded, gray, wet, stratified, fine to coarse sand, non-plastic, trace organics, with trace fine gravel, stratified with SANDY SILT (ML), micaceous. -Sand heave observed in sonic casing before Sample SC-10.	- - - -	
	- 125			Rec=10.0'		SC-10		SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to coarse sand, with trace fine gravel.		
	- - - - - - - - -								-	

LOG OF BORING IBR-04

Project: Interstate Bridge Replacement Program

Depth (feet)	Elevation (feet)	Profile		blows/ft) T N ₆₀ ♦ 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
	- - - - - -		0		Rec=10.0'		SC-10	GS	SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to coarse sand, with trace fine gravel.	-	
110-	- - - - - - - - -								[SC-11A] 109.3 to 112: SP : POORLY GRADED SAND, subangular to subrounded, grayish brown, wet, homogeneous, fine to medium sand, iron oxide staining, micaceous.	-	
115-	- - - - - - - - -				Rec=11.3'		SC-11	C	[SC-11B] 112 to 120.6: SM : SILTY SAND, subangular to subrounded, gray, wet, homogeneous, fine sand, non-plastic, micaceous.	-	
- 120- -	- - - - - - - - -		0					GS	-A portion of Sample SC-11 was recovered with Sample SC-12.	-	
- 125- -	- - - - - - - - - -			S	Rec=5.1'		SC-12		[SC-12A] 120.6 to 128: SM : SILTY SAND, subangular to subrounded, gray, wet, homogeneous, fine sand, non-plastic, micaceous.	-	
	- - - - - - - - - - - - - - - - - - -						-		[SC-12B] 128 to 130.8: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous. -Sand heave observed in sonic casing before Sample SC-13.	-	
- 1000 1000 1000 1000 1000 1000 1000 10	- - - - - - - - - -				Rec=4.8'		SC-13		SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous, poor sample recovery.	-	
STANDARD BORI			XT PAGE (see last page)	for notes)						- VERSIC	ON 0.7 DRAFT

LOG OF BORING IBR-04

Project: Interstate Bridge Replacement Program

Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

	it)				d)	e			su	
Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{60} 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
140-			o	Rec=4.8'		SC-13	GS	-Approximately 9 feet of sand heave measured in sonic casing after Sample SC-13. Driller added bentonite grout to borehole to reduce sand heave. [SC-14A] 140.3 to 142: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, moist to wet, homogeneous, fine to medium sand, non-plastic, micaceous.	-	
145-	 			Rec=7.7'		SC-14		[SC-14B] 142 to 150.6: SP : POORLY GRADED SAND, subangular to subrounded, gray, moist to wet, homogeneous, fine to medium sand, micaceous.	-	
150-	 							-Driller switched to 4-inch ID basket sonic core barrel bit.	-	
155-	- - - - - - -			Rec=10.2'		SC-15	0.	SP : POORLY GRADED SAND, subangular to subrounded, gray, moist to wet, homogeneous, fine to medium sand, micaceous.	-	
- 160 -								-Driller noted harder, smooth drilling at approximately 160 feet. -Driller switched to 4-inch ID auger sonic core barrel bit. [SC-16A] 160.8 to 162: SP : POORLY GRADED SAND, subangular to subrounded, gray, moist to wet, homogeneous, fine to medium sand, micaceous.		
2028 WSDOT GINT TEMPLATE. GDT 5/31/24	- - - - - - - - -			Rec=4.9'		SC-16		[SC-16B] 162 to 170.7: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, moist to wet, homogeneous, fine to coarse sand, non-plastic, with trace fine gravel, micaceous, poor sample recovery.	-	
- 1700-1981, WSD01, GF0-	200		• •	Rec=4.5'		SC-17	GS	-Driller switched to 4-inch ID flapper sonic core barrel bit. SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to coarse sand, non-plastic, trace wood fragments	-	
	205		XT PAGE (see last page for notes)					from 170.7 to 172 feet, with trace fine gravel, micaceous, poor sample recovery.	VERSIC	

LOG OF BORING IBR-04

Project: Interstate Bridge Replacement Program

Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{60} 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
- - - 180-	- 210			Rec=4.5'		SC-17		SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to coarse sand, non-plastic, trace wood fragments from 170.7 to 172 feet, with trace fine gravel, micaceous, poor sample recovery. -Sample SC-17 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample.	-	
- - - 185	 2\5			Rec=9.4'		SC-18		[SC-18A] 179.6 to 185.6: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, moist to wet, stratified, fine to coarse sand, non-plastic, with trace fine gravel, stratified with SILTY SAND (SM), micaceous. -Driller noted harder drilling at approximately 185 feet. -Grain size analysis distribution may not be		
- - 190 -	220		0				GS	representative due to fractured clasts. [SC-18B] 185.6 to 189: GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray, wet, fine to coarse gravel, fine to coarse sand, micaceous, fractured clasts from sonic drilling. -Driller switched to 4-inch ID standard sonic core barrel bit.	-	
- - 195 - - -	225 225 			Rec=0.0'		SC-19	Ċ	NO RECOVERY -No sample recovery from 189 to 199.6 feet. GP: POORLY GRADED GRAVEL WITH SAND inferred from drill action.	-	
- 200 - 200	230							-Driller switched to 4-inch ID auger sonic core barrel bit.	-	
	235		o	Rec=10.2'		SC-20	GS	-Grain size analysis distribution may not be representative due to fractured clasts. GM : SILTY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, moist, fine to coarse gravel, fine to coarse sand, low plasticity, zones of cementation, iron oxide staining, micaceous, fractured clasts from sonic drilling.	-	
- 210 - 210	240		XT PAGE (see last page for notes)	Rec=10.4'		SC-21			- - - VERSIC	

LOG OF BORING IBR-04

Project: Interstate Bridge Replacement Program

Depth (feet)	Elevation (feet)	Profile	Penetration Field N	\diamond $$	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	
- - 215 - - -	- - - - - -				Rec=10.4'		SC-21		GM : SILTY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, moist, stratified, fine to coarse gravel, fine to coarse sand, low plasticity, stratified with SILTY SAND WITH GRAVEL (SM), zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling.	-	
- 220— -	- 250 									-	
- - 225— - -	- - - - -		0		Rec=10.0'		SC-22	GS	GM/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subrounded to rounded, gray and brown, moist to wet, fine to coarse gravel, fine to coarse sand, low to medium plasticity, zones of cementation, iron oxide staining, micaceous, fractured clasts from sonic drilling. -Grain size analysis distribution may not be representative due to fractured clasts.	-	
- 230— -	_ 260 							Ċ		-	
- - 235— - -	- - - - 265 -				Rec=10.0'		SC-23		GM/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subrounded to rounded, gray and brown, moist to wet, fine to coarse gravel, fine to coarse sand, low to medium plasticity, zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 4 inches, fractured clasts from sonic drilling.	-	
- 240— -	210								-Material from 240.2 to 245 feet was dropped while bagging. Description based on observed disturbed material and drill action.	-	
- - 245 -	- - - - 215				Rec=9.8'		SC-24		GM/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subrounded to rounded, gray and brown, moist to wet, fine to coarse gravel, fine to coarse sand, low to medium plasticity, zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 4 inches, fractured clasts from sonic drilling.	-	

LOG OF BORING IBR-04

Project: Interstate Bridge Replacement Program

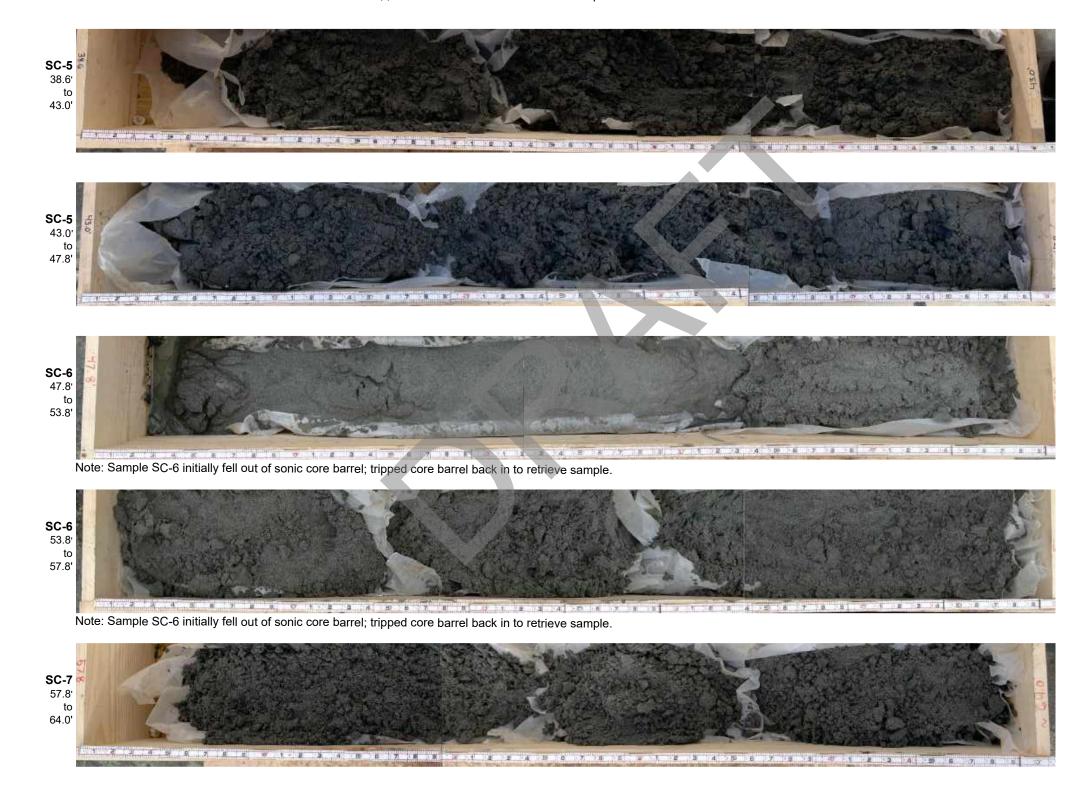
Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Fir Penetra Fiel 0 20	istance) e (blows/ft) PT N₀₀ ⊗ 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
-250-					- - - - - -	Rec=9.8'		SC-24			_	

HOLE ENDED AT 250.0 FEET ON 11-13-2023

NOTES:

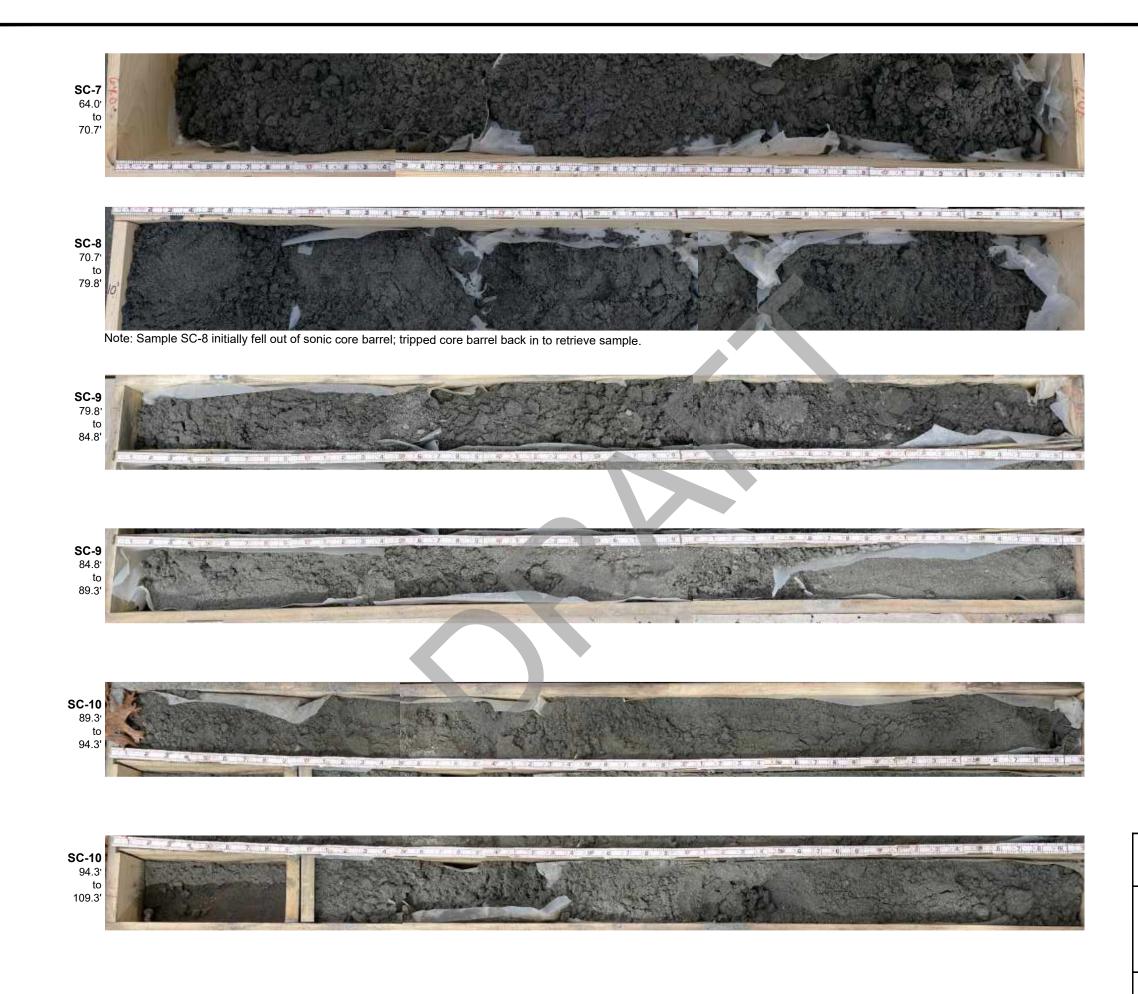
- 1. This is a summary log of the boring. Soil/rock descriptions are derived from visual field identifications and laboratory test data (where tested). See exploration log legend for explanation of graphics and abbreviations.
- 2. The implied accuracy of the location information displayed on this log is typically sub-meter (X,Y) when collected using GPS methods by the Geotechnical Office and sub-centimeter (X,Y,Z) when collected by the Region survey crew.
- 3. Where oversized samplers were used, a correction was made to the N-value per the AASHTO Manual on Subsurface Investigations, 1988. Blow counts per 6-inch increment have not been corrected.
- 4. The groundwater level (s), if shown, represents observations made during drilling. The groundwater level should be considered approximate and will vary based on seasonal and other effects.


Sheet 1 of 7

105511

BORING IBR-04 CORE PHOTOGRAPHS

Note: Sample SC-4 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample.



Sheet 2 of 7

105511

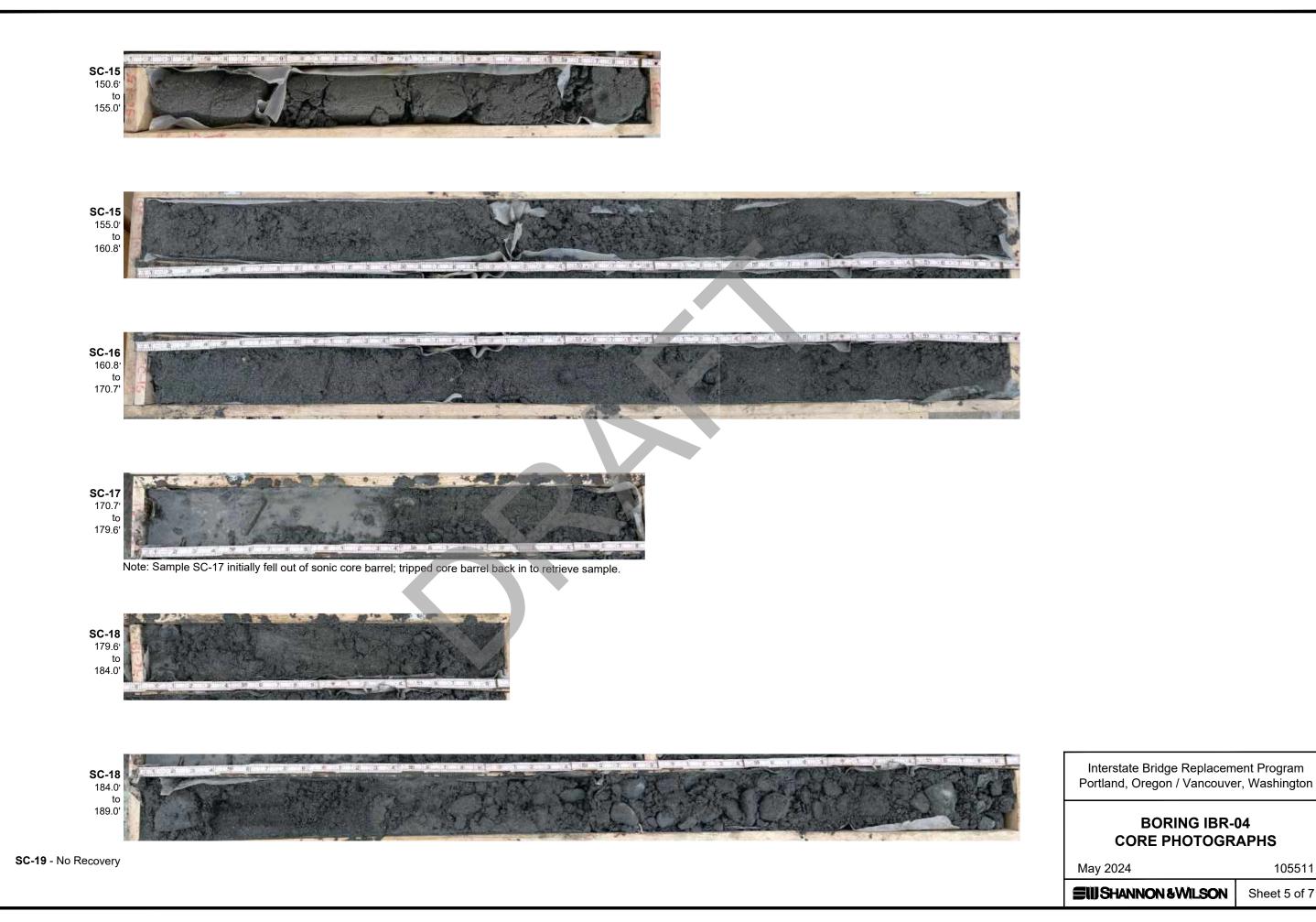
BORING IBR-04 CORE PHOTOGRAPHS

May 2024

105511 Sheet 3 of 7

BORING IBR-04 CORE PHOTOGRAPHS

May 2024

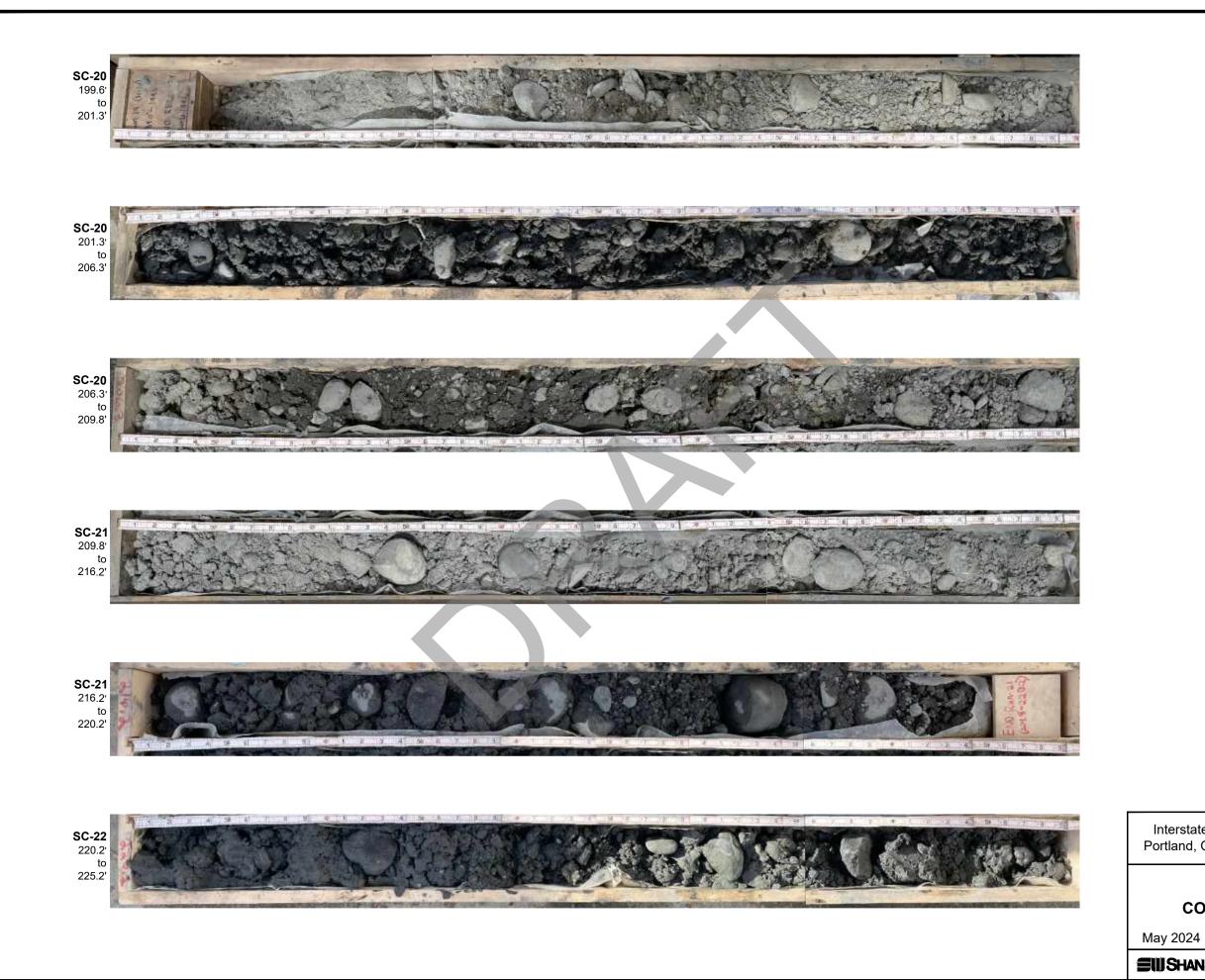


Sheet 4 of 7

May 2024

105511

BORING IBR-04 CORE PHOTOGRAPHS


EIII SHANNON & WILSON

BORING IBR-04 CORE PHOTOGRAPHS

105511

May 2024

Sheet 5 of 7

Sheet 6 of 7

105511

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

BORING IBR-04

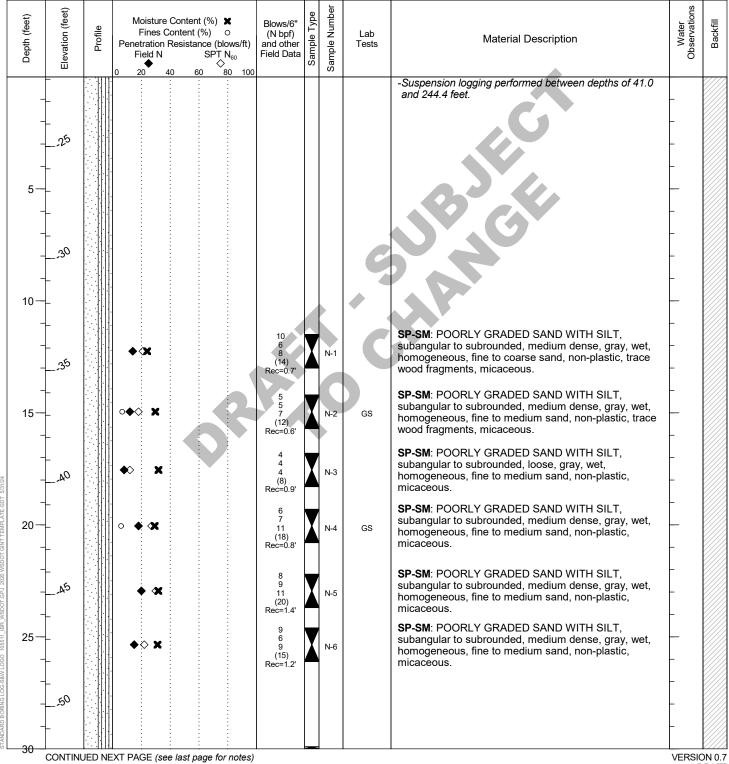
CORE PHOTOGRAPHS

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

BORING IBR-04 CORE PHOTOGRAPHS

May 2024

105511


EIII SHANNON & WILSON

Sheet 7 of 7

LOG OF BORING IBR-05

Project:	Interstate Bridge Repl	acement Pro	gram
Northing:	111,405.1 feet	Latitude:	45.617778 deg.
Easting:	1,083,544.5 feet	Longitude:	-122.676155 deg.
Elevation:	-21.9 feet	Collector:	Region Survey
Horizonta	I/Vertical Datum: <u>IBR</u> F	Project / NAV	D88
Started:	February 13, 2024	Completed:	February 23, 2024

Job Number: Y-12435 Route & MP Rar	ge: SR 005 MP 0.00 - 0.30
Driller/Inspector: Richard Wiggins (Weste	rn States) / Connor McCord (S&W)
Start Card: N/A	
Drilling Method: Mud Rotary	Hole Diam.: 5.5 in
Equipment:CME-850XR Track Rig (ID:4	17612) Rod Type: NWJ
Hammer Type: AutoHammer	Historic Efficiency: 89.4%

LOG OF BORING IBR-05

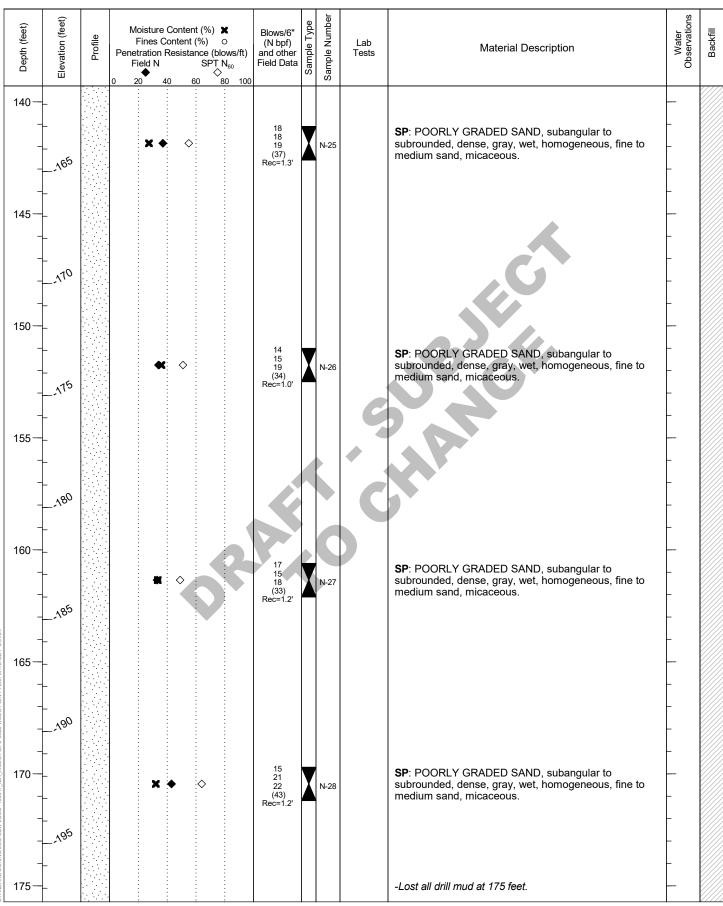
Project: Interstate Bridge Replacement Program

Depth (feet)	Elevation (feet)	Profile	Moisture Content (%) \times Fines Content (%) \circ Penetration Resistance (blows/ft) Field N SPT N ₆₀ \circ 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
-	- - 55			10 12 11 (23) Rec=1.3'	X	N-7		SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, medium dense, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous.	-	
- 35— - -	- - - - - 03		○ ◆ े★	9 9 (18) Rec=1.5'	X	N-8	GS	SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, medium dense, gray, wet, homogeneous, fine sand, non-plastic, micaceous.	-	
40	- - - - - -		• *	10 12 13 (25) Rec=1.2' 8 9 11 (20) Rec=1.5'	X	N-9 N-10	G	-Wood debris observed in cuttings from 40 to 50 feet. SP-SM: POORLY GRADED SAND WITH SILT, subangular to subrounded, dense, gray, wet, homogeneous, fine to medium sand, non-plastic, trace organics and wood fragments, micaceous. SP-SM: POORLY GRADED SAND WITH SILT, subangular to subrounded, medium dense, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous.	-	
- - - 50	- 			6 7 11 (18) Rec=1.5'	X	N-11	C	SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, medium dense, gray, wet, stratified, fine to medium sand, non-plastic, stratified with SANDY SILT (ML), micaceous.	-	
- - - 555- -	- - 		o # o	10 12 16 (28) Rec=1.0'	X	N-12	GS	-Trace fine gravel observed in drill cuttings from approximately 50 to 55 feet. SP : POORLY GRADED SAND, subangular to subrounded, dense, gray, wet, homogeneous, fine to medium sand, micaceous.	-	
	- <i>8</i> 0 			6 7 11 (18) Rec=1.0'	X	N-13		SP : POORLY GRADED SAND, subangular to subrounded, medium dense, gray, wet, homogeneous, fine to medium sand, micaceous. -Driller noted borehole instability from 60 to 110 feet.	-	
			■ ■ ◆	12 13 17 (30) Rec=1.0'	X	N-14		SP : POORLY GRADED SAND, subangular to subrounded, dense, gray, wet, homogeneous, fine to medium sand, micaceous.	- - 	

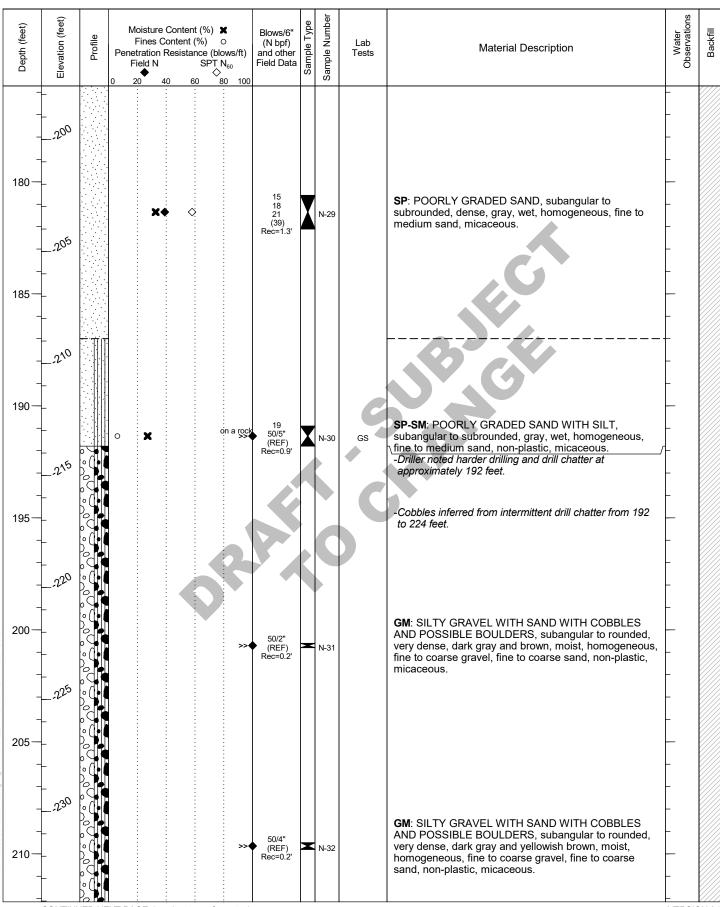

LOG OF BORING IBR-05

Project: Interstate Bridge Replacement Program

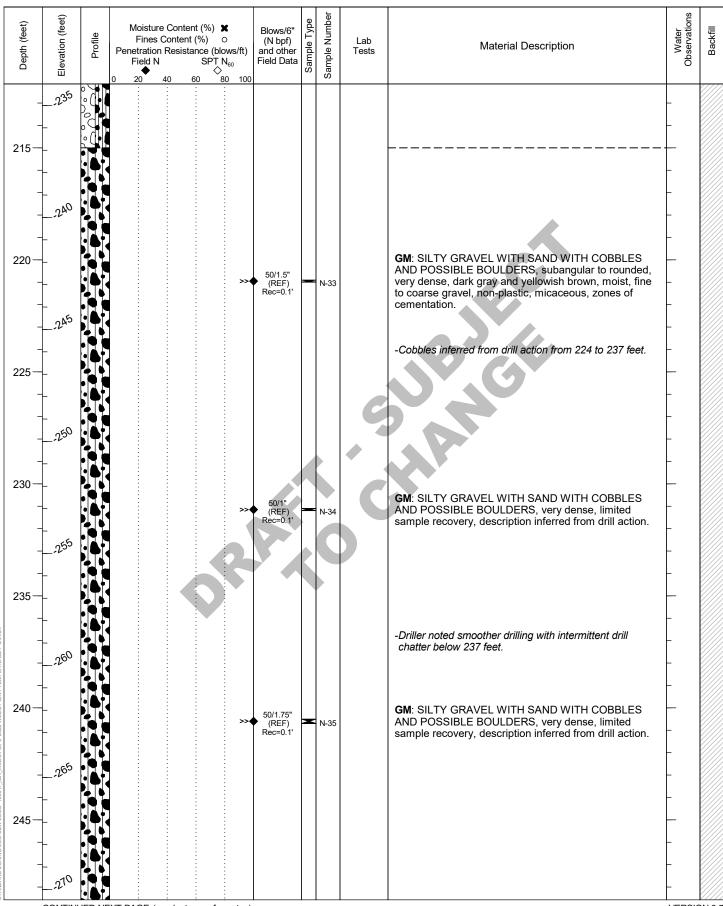
Depth (feet)	Elevation (feet)	Profile	Penetration Field N	Content (Resista	t (%) ≭ (%) ○ nce (blows/ft) SPT N ₆₀ © 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
- - - 70-	90 90		€ <	\$		10 11 15 (26) Rec=1.0'	X	N-15		SP : POORLY GRADED SAND, subangular to subrounded, dense, gray, wet, homogeneous, fine to medium sand, micaceous.	-	
- - 75	95 95 		4 €¢			11 10 13 (23) Rec=0.9'	X	N-16		SP : POORLY GRADED SAND, subangular to subrounded, medium dense, gray, wet, homogeneous, fine to medium sand, micaceous.	-	
			*	\$		15 18 15 (33) Rec=1.5'	X	N-17		SP : POORLY GRADED SAND, subangular to subrounded, dense, gray, wet, homogeneous, fine to medium sand, micaceous.	- - -	
- - - 85—	105		∘ ♦≭	· · · · · · · · · · · · · · · · · · ·		12 12 12 (24) Rec=1.5'		N-18	GS	SP : POORLY GRADED SAND, subangular to subrounded, medium dense, gray, wet, homogeneous, fine to medium sand, micaceous.	-	
- - - 90 -	- - - - -		◆ x		58	11 13 13 (26) Rec=1.5'		N-19		SP : POORLY GRADED SAND, subangular to subrounded, dense, gray, wet, homogeneous, fine to medium sand, micaceous.	-	
	 		◆			11 9 11 (20) Rec=1.5'	X	N-20		SP : POORLY GRADED SAND, subangular to subrounded, medium dense, gray, wet, homogeneous, fine to medium sand, micaceous.	- - -	
	120		*	\$		11 15 20 (35) Rec=1.3'	X	N-21		SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, dense, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous.	- - -	
	CONTINU	UED NE	XT PAGE (se	e last p	age for notes)						VERSIC	ON 0. DRAF


LOG OF BORING IBR-05

Project: Interstate Bridge Replacement Program


LOG OF BORING IBR-05

Project: Interstate Bridge Replacement Program


LOG OF BORING IBR-05

Project: Interstate Bridge Replacement Program

LOG OF BORING IBR-05

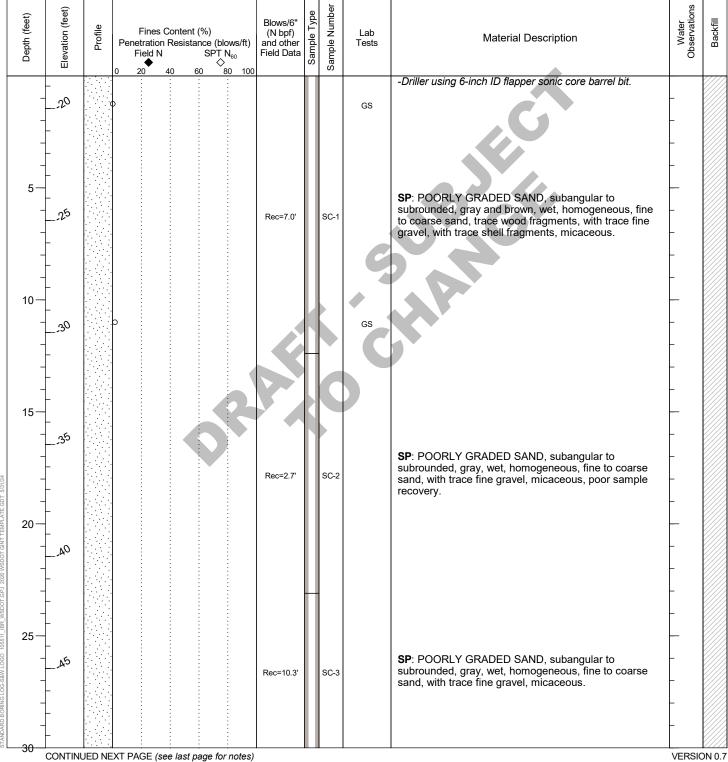
Project: Interstate Bridge Replacement Program

LOG OF BORING IBR-05

Project: Interstate Bridge Replacement Program

Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Fines C Penetration F Field N	SF	0	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
250-	 				>>4	50/2" (REF) Rec=0.2'	X	N-36		GM : SILTY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, very dense, dark gray and yellowish brown, moist, fine to coarse gravel, non-plastic, zones of cementation, iron oxide staining, micaceous.	-	
255-	2(5 										-	
260-						50/1"				GM : SILTY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, very dense, very dark	-	
L	HOLE E	INDED	AT 261.0 FE	ET ON 2-2	3-2024	(REF) Rec=0.1'		<u>N-37</u>		gray, limited sample recovery, description inferred from drill action.	ſ <u>└</u>	<u>/////</u>


NOTES:

- 1. This is a summary log of the boring. Soil/rock descriptions are derived from visual field identifications and laboratory test data (where tested). See exploration log legend for explanation of graphics and abbreviations.
- 2. The implied accuracy of the location information displayed on this log is typically sub-meter (X,Y) when collected using GPS methods by the Geotechnical Office and sub-centimeter (X,Y,Z) when collected by the Region survey crew.
- 3. Where oversized samplers were used, a correction was made to the N-value per the AASHTO Manual on Subsurface Investigations, 1988. Blow counts per 6-inch increment have not been corrected.
- 4. The groundwater level(s), if shown, represents observations made during drilling. The groundwater level should be considered approximate and will vary based on seasonal and other effects.

LOG OF BORING IBR-06

Project: Interstate Bridge Re	placement Program
Northing: <u>111,808.0 feet</u>	Latitude: 45.618904 deg.
Easting: 1,083,722.7 feet	Longitude: -122.675503 deg.
Elevation: -18.5 feet	Collector: Region Survey
Horizontal/Vertical Datum: <u>IBR</u>	Project / NAVD88
Started: November 28, 2023	Completed: November 29, 2023

Job Number: Y-12435 Route & MP Range:	SR 005 MP 0.00 - 0.30										
Driller/Inspector: Alex McCann (Western States) / Connor McCord (S&W)											
Start Card: N/A											
Drilling Method: Sonic Rotary	Hole Diam.:8 in										
Equipment: Geoprobe 8150LS Sonic Track	Rig Rod Type:N/A										
Hammer Type: N/A											

LOG OF BORING IBR-06

Project: Interstate Bridge Replacement Program

Depth (feet)	Elevation (feet)	Profile	Penetration Field N	Content (%) Resistance (blov SPT N 40 60 80	ws/ft) 60 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
_	50 					Rec=10.3'		SC-3		SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to coarse sand, with trace fine gravel, micaceous. -Driller switched to 4-inch ID flapper sonic core barrel	-	
- 35— -	- - - 55									bit.	-	
-	 					Rec=10.1'		SC-4		SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to coarse sand, with trace fine gravel, micaceous.	-	
40	- - - -										-	
- - 45—	 								C		-	
_	65 - -		0						GS		-	
50 — 					2			C			-	
- - 55—				Q		Rec=16.5'		SC-5		SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to coarse sand, with trace fine gravel, micaceous.	-	
_	- 										-	
- 60 <i>-</i>	- - - -											
-										[SC-6A] 63.6 to 65: SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous,	-	
65—						Rec=20.0'		SC-6		fine to coarse sand, with trace fine gravel, micaceous.	+	

LOG OF BORING IBR-06

Project: Interstate Bridge Replacement Program

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{60} 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
	- - - -						[SC-6B] 65 to 68: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, non-plastic, \micaceous.	- ,- -	
70-	- - - - -						[SC-6C] 68 to 77: SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, micaceous.	 - -	
75-	- - - - - - - - - - - - - - - 95			Rec=20.0'	SC-6			-	
80-	- - - - - -						[SC-6D] 77 to 80: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, non-plastic, micaceous.	-	
	0						[SC-6E] 80 to 83.6: SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, micaceous.	-	
85-	- - - - - - - - - - - - -						[SC-7A] 83.6 to 93.3: SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, micaceous.	-	
- 06	- - - - - -			Rec=20.3'	SC-7			 - -	
&WLOGO 100511_IBR_WSDOTGPJ 2020 WSDOTGNTTEMP - 56	- - - - - - - - - - - - - - - -		o			GS, AL	[SC-7B] 93.3 to 101: ML : SILT, gray, moist, laminated, non-plastic to low plasticity, with trace fine sand.	-	
TANDARD BORING LOG-S&W LOGO	- 120		XT PAGE (see last page for notes)				[SC-7C] 101: ML : SILT WITH SAND, gray, moist, stratified, fine sand, non-plastic to low plasticity, stratified with SANDY SILT (ML).		

LOG OF BORING IBR-06

Project: Interstate Bridge Replacement Program

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{60} 0 20 40 60 80 100	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
	- - - - - - - - - - - - - - - - - - -		0 Rec=20.3	SC-7	GS	[SC-8A] 103.9 to 106.4: ML : SILT WITH SAND, gray, moist, stratified, fine sand, non-plastic to low plasticity, stratified with SANDY SILT (ML).	- - - -	
110-	- - - - - - - - - - -					[SC-8B] 106.4 to 113: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, wet, homogeneous, fine sand, non-plastic, micaceous.	-	
- 115- -	- - - - - - - - - - -		Rec=17.0	SC-8			-	
- - - - - -	- - - - - - - - - - - - - - - -					[SC-8C] 113 to 123.9: SP : POORLY GRADED SAND, subangular to subrounded, gray, wet, homogeneous, fine to medium sand, micaceous.	-	
125- -	- - - - - - - - -					-Driller switched to 4-inch ID auger sonic core barrel bit.	-	
	- - - - - - - - - - - - - -		Rec=16.0	SC-9		[SC-9A] 123.9 to 135.4: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, moist to wet, homogeneous, fine to medium sand, non-plastic, micaceous. -Sample SC-9 initially fell out of sonic core barrel; tripped core barrel back in to retrieve sample.		
135	- - - - - - - - - - - - - - - - - - -	JED NE	O XT PAGE (see last page for notes)		GS	[SC-9B] 135.4 to 136: SM : SILTY SAND, subangular to subrounded, gray, moist, homogeneous, fine sand, non-plastic, micaceous. [SC-9C] 136 to 143.4: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, moist to wet, homogeneous, fine to medium sand, non-plastic, micaceous.	- - - - - - - - - -	

LOG OF BORING IBR-06

Project: Interstate Bridge Replacement Program

Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{60} 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
140	160			Rec=16.0'		SC-9		[SC-9C] 136 to 143.4: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, moist to wet, homogeneous, fine to medium sand, non-plastic, micaceous.	-	
- 145— - -			0	Rec=8.0'		SC-10	GS	[SC-10A] 143.4 to 150.4: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, moist to wet, homogeneous, fine sand, non-plastic, micaceous.	-	
	10		0				GS, AL	[SC-10B] 150.4 to 152.4: SM : SILTY SAND, subangular to subrounded, gray, moist to wet, homogeneous, fine sand, non-plastic, micaceous.	- - -	
- - 155 — - -			0				GS			
	80			Rec=20.2'		SC-11		[SC-11A] 152.4 to 171.4: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, gray, moist to wet, homogeneous, fine to medium sand, non-plastic, with trace fine gravel, micaceous.		
- 2000 GINT TEMPLATE. GDT 5/31/									-	
	- - - - - -					0.10		-Driller noted harder drilling at approximately 171 feet. [SC-11B] 171.4 to 172.6: SP-SM : POORLY GRADED SAND WITH SILT AND GRAVEL, subangular to subrounded, gray, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic, micaceous. [SC-12A] 172.6 to 180: SP-SM : POORLY GRADED SAND WITH SILT AND GRAVEL, subangular to		
175-	- -		XT PAGE (see last page for notes)	Rec=20.5'		SC-12		SAND WITH SILT AND GRAVEL, subangular to subrounded, gray, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic, micaceous.	VERSIC	

LOG OF BORING IBR-06

Project: Interstate Bridge Replacement Program

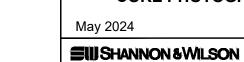
Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{60} 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
-	 							[SC-12A] 172.6 to 180: SP-SM : POORLY GRADED SAND WITH SILT AND GRAVEL, subangular to subrounded, gray, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic, micaceous.		
180-	200							[SC-12B] 180 to 183.6: SP-SM : POORLY GRADED SAND WITH SILT, subangular to subrounded, dark gray, wet, homogeneous, fine to coarse sand, non-plastic, micaceous.	-	
- 185	205		0	Rec=20.5'		SC-12	GS	-Driller noted harder drilling at approximately 184 feet. [SC-12C] 183.6 to 184.8: SM : SILTY SAND, subangular to subrounded, dark gray, wet, homogeneous, fine to coarse sand, non-plastic, micaceous. -Grain size analysis distribution may not be representative due to fractured clasts.	- - -	
- - 190							C	[SC-12D] 184.8 to 193.1: GP-GM : POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES AND BOULDERS, subangular to rounded, gray and brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic, micaceous. -Boulder inferred from drilling action from 191.1 to 192.6 feet.	-	
							C	[SC-13A] 193.1 to 199.1: GP-GM : POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES	-	
-	215							AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic, micaceous, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling.	_	
- 2000	220			Rec=15.3'		SC-13		[SC-13B] 199.1 to 207: GP-GM : POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, moist, fine to coarse gravel, fine to	-	
- 200 MEDICIEN 700 MEDICIEN	225		0				GS	coarse sand, low plasticity, zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling. -Grain size analysis distribution may not be representative due to fractured clasts.	-	
	- - - - - - - - -			Rec=14.5'		SC-14		[SC-13C] 207 to 208.4: GM/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, moist, fine to coarse gravel, fine to coarse sand, low to medium plasticity, zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 3 inches, fractured clasts from sonic	-	
STANUAKU	230		XT PAGE (see last page for notes)					drilling. [SC-14A] 208.4 to 213: GM/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND		

LOG OF BORING IBR-06

Project: Interstate Bridge Replacement Program

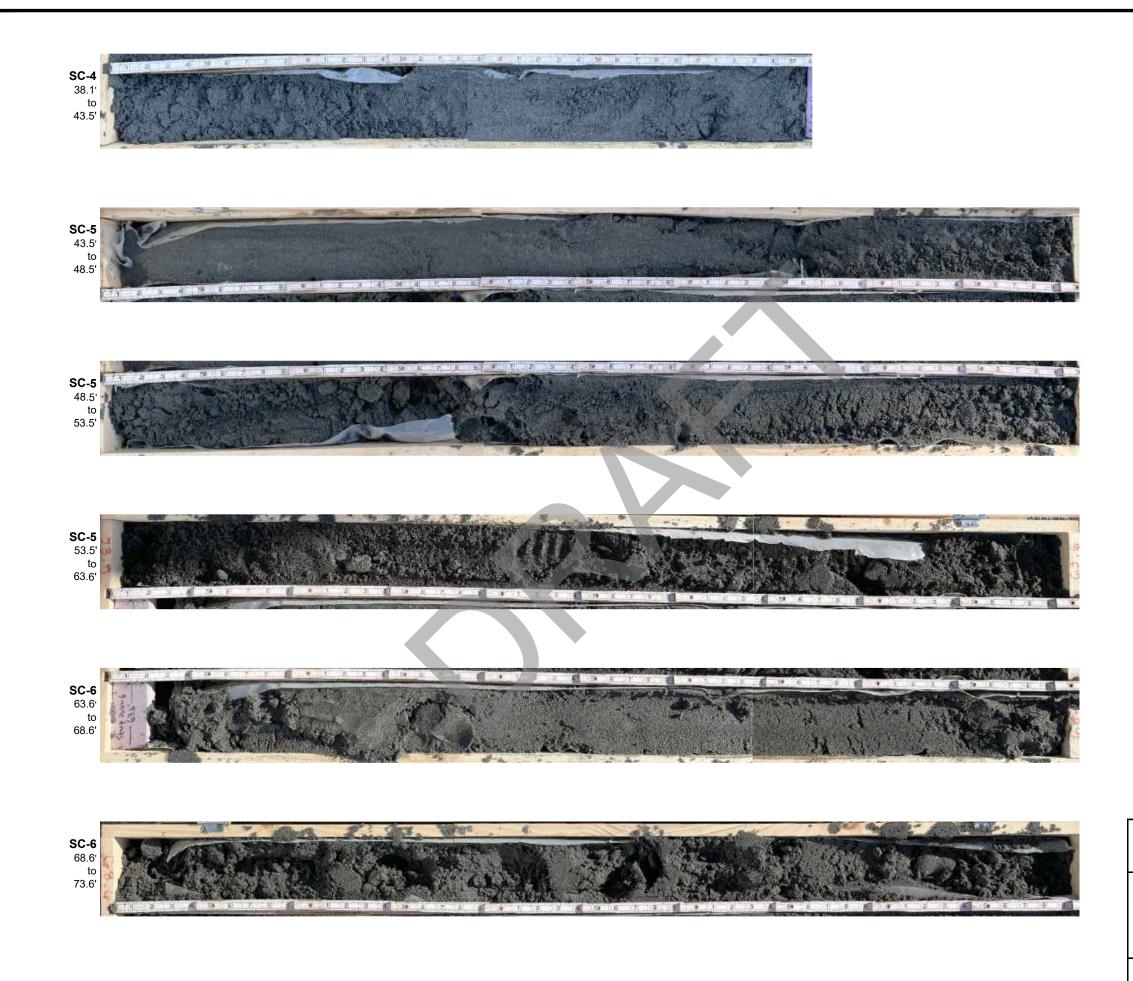
Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30


Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N ₆₀ 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
215- - - - - - 220- - -	- - - - - - - - - - - - - - - - - - -		ο	Rec=14.5'		SC-14	GS	POSSIBLE BOULDERS, subangular to rounded, gray and brown, moist, fine to coarse gravel, fine to coarse sand, low to medium plasticity, zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling. [SC-14B] 213 to 222.9: GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to subrounded, gray and brown, moist, fine to coarse gravel, fine to coarse sand, iron oxide staining, micaceous, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling. - <i>Grain size analysis distribution may not be</i> <i>representative due to fractured clasts</i> . [SC-15A] 222.9 to 225: GP : POORLY GRADED	-	
- 225 - - - 230 - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			Rec=14.3*		SC-15	Ċ	 [SC-15A] 222.5 to 233. GP-GM: POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, moist, fine to coarse gravel, fine to coarse sand, iron oxide staining, micaceous, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling. [SC-15B] 225 to 237.2: GP-GM: POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, moist, fine to coarse gravel, fine to coarse sand, low plasticity, iron oxide staining, micaceous, maximum micaceous, fractured clasts from sonic drilling. 		

HOLE ENDED AT 237.2 FEET ON 11-29-2023

NOTES:

- 1. This is a summary log of the boring. Soil/rock descriptions are derived from visual field identifications and laboratory test data (where tested). See exploration log legend for explanation of graphics and abbreviations.
- 2. The implied accuracy of the location information displayed on this log is typically sub-meter (X,Y) when collected using GPS methods by the Geotechnical Office and sub-centimeter (X,Y,Z) when collected by the Region survey crew.
- 3. Where oversized samplers were used, a correction was made to the N-value per the AASHTO Manual on Subsurface Investigations, 1988. Blow counts per 6-inch increment have not been corrected.
- 4. The groundwater level(s), if shown, represents observations made during drilling. The groundwater level should be considered approximate and will vary based on seasonal and other effects.


BORING IBR-06 CORE PHOTOGRAPHS

Interstate Bridge Replacement Program

Portland, Oregon / Vancouver, Washington

105511

Sheet 1 of 8

EIII SHANNON & WILSON

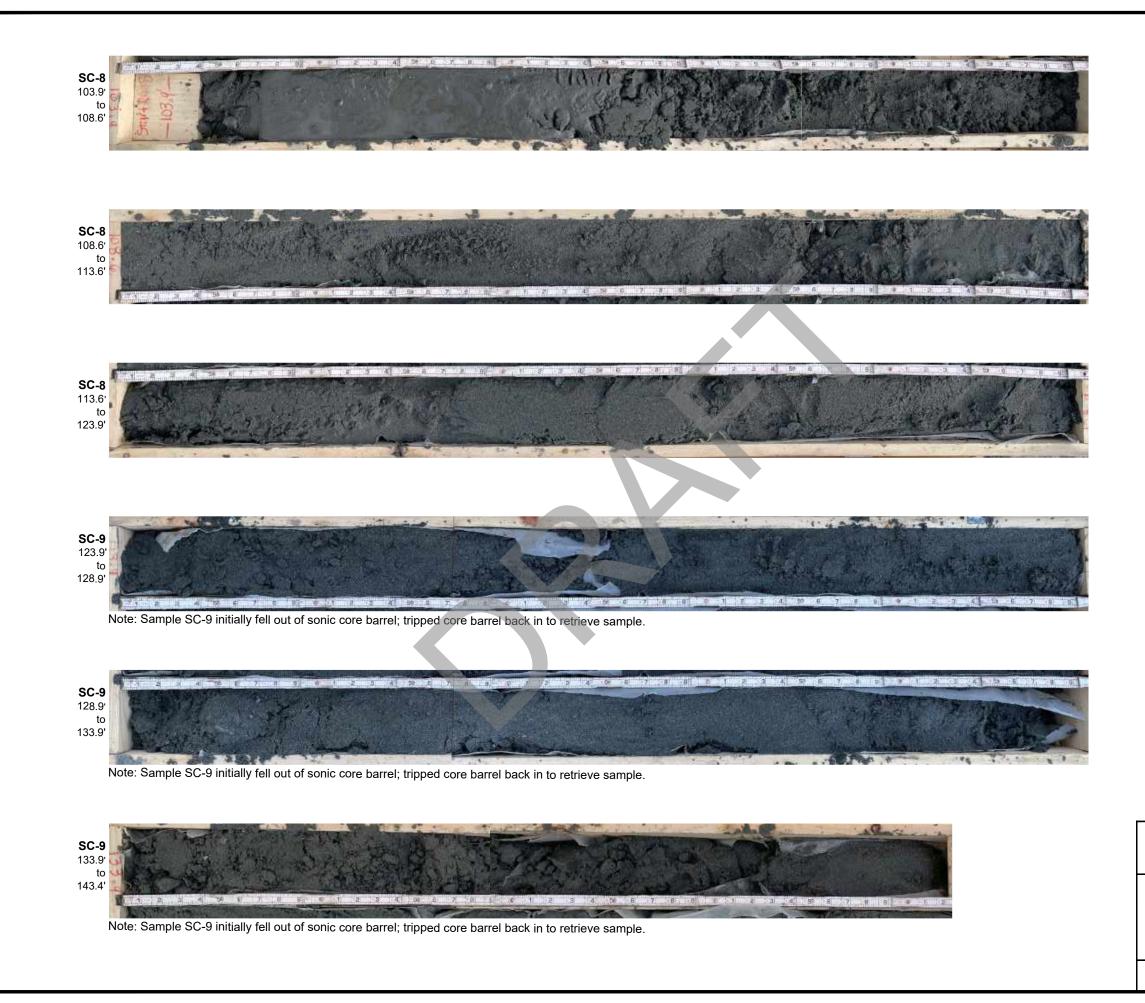
May 2024

Sheet 2 of 8

105511

BORING IBR-06

CORE PHOTOGRAPHS


Sheet 3 of 8

105511

CORE PHOTOGRAPHS

May 2024

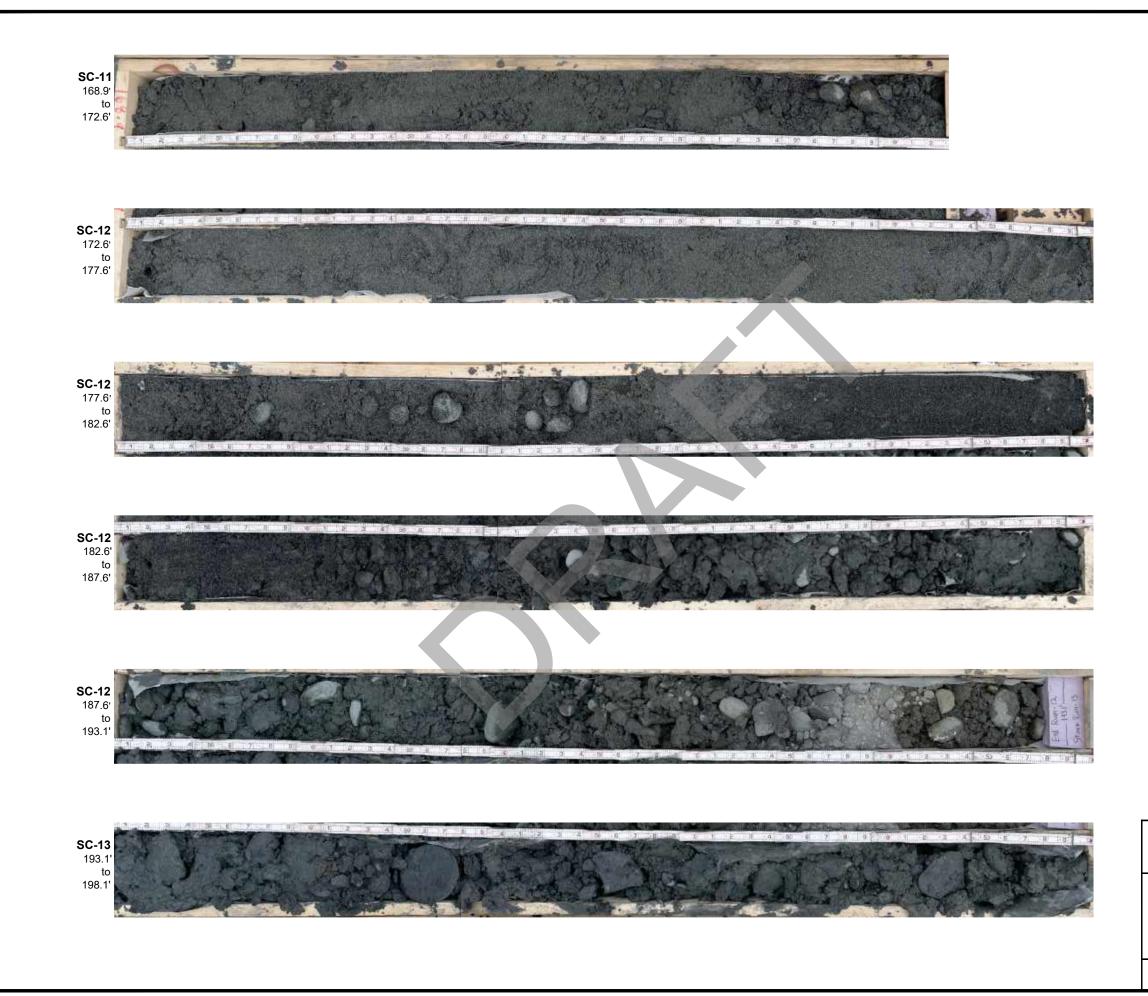
BORING IBR-06

Sheet 4 of 8

105511

May 2024

BORING IBR-06 CORE PHOTOGRAPHS


Sheet 5 of 8

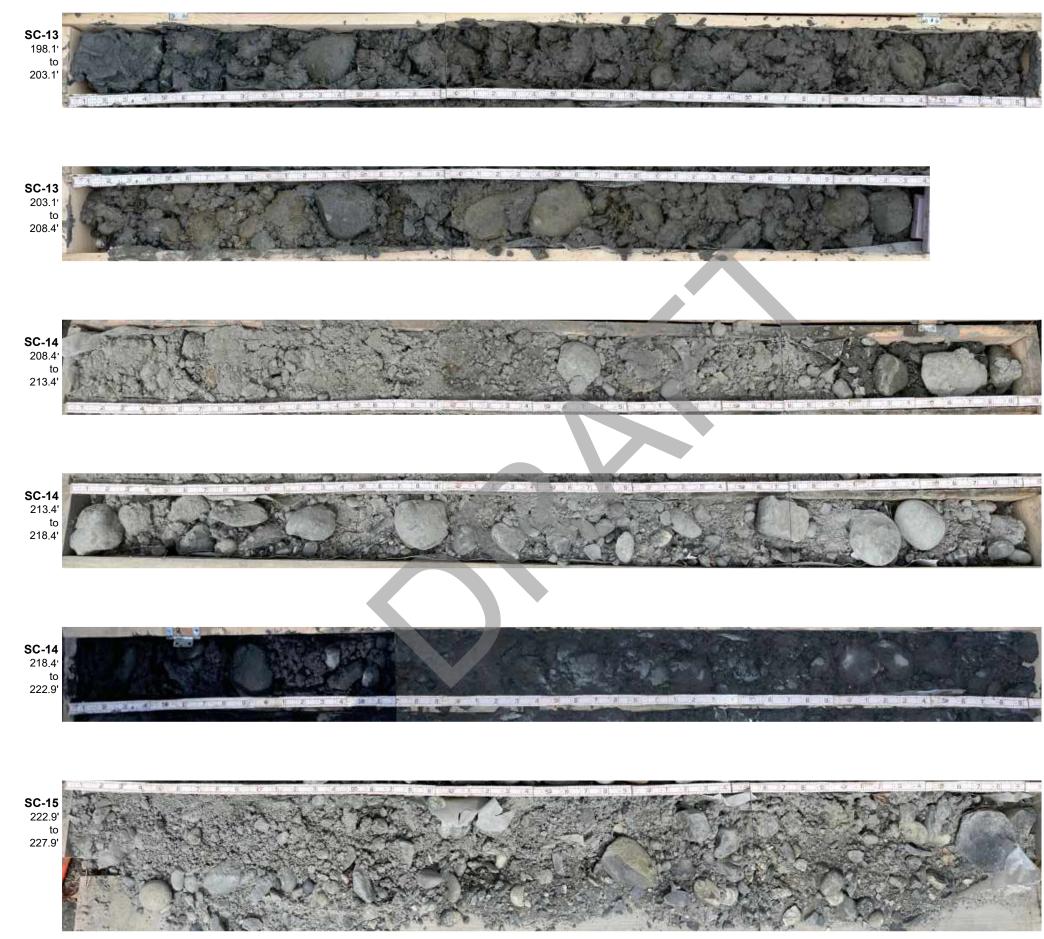
105511

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

BORING IBR-06

CORE PHOTOGRAPHS

EIII SHANNON & WILSON


Sheet 6 of 8

105511

BORING IBR-06 CORE PHOTOGRAPHS

May 2024



Sheet 7 of 8

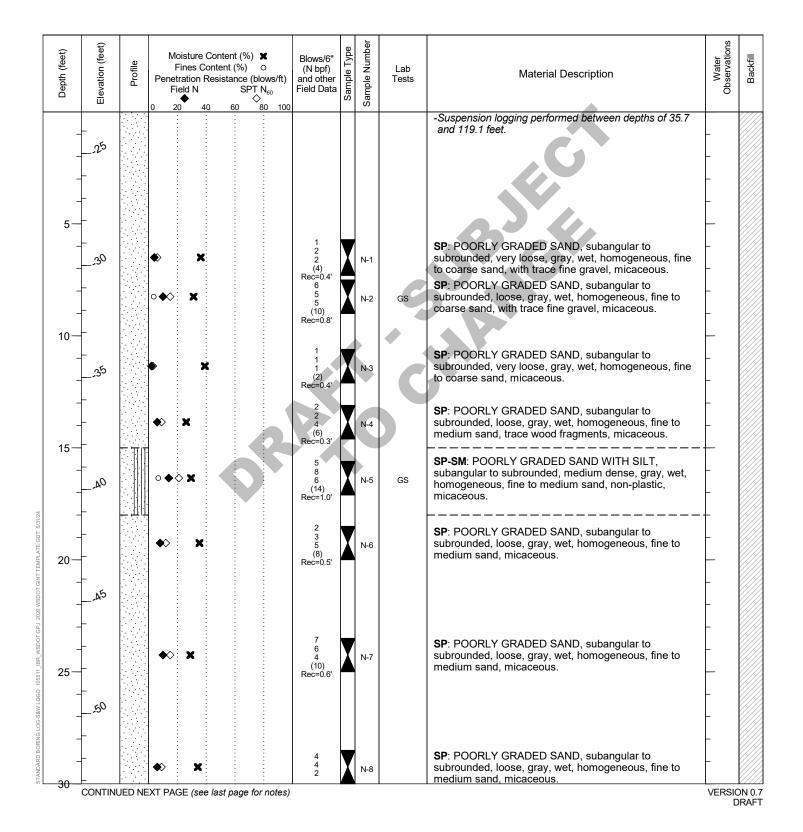
105511

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

May 2024

105511

BORING IBR-06 CORE PHOTOGRAPHS


Sheet 8 of 8

EIII SHANNON & WILSON

LOG OF BORING IBR-07

Project:	Interstate Bridge Repla	cement Proc	jram
Northing:	112,219.6 feet	Latitude:	45.620047 deg.
Easting:	1,083,915.4 feet	Longitude:	-122.674794 deg.
Elevation:	-23.1 feet	Collector:	Region Survey
Horizontal/	Vertical Datum: <u>IBR P</u>	roject / NAVE	088
Started:	January 3, 2024	Completed:	January 8, 2024

Job Number: Y-1	2435 Route & MP Range:	SR 005 MP	0.00 -	0.30
Driller/Inspector:	Josh&Aaron (Western States) / Connor N	1cCord	(S&W)
Start Card: N/A				
Drilling Method:	Mud Rotary	Hole	Diam.:_	8 & 6 in
Equipment:CN	IE-850XR Track Rig (ID:4176	12) Rod	Type:_	NWJ
Hammer Type:	AutoHammer	Historic Effic	iencv:	89.4%

LOG OF BORING IBR-07

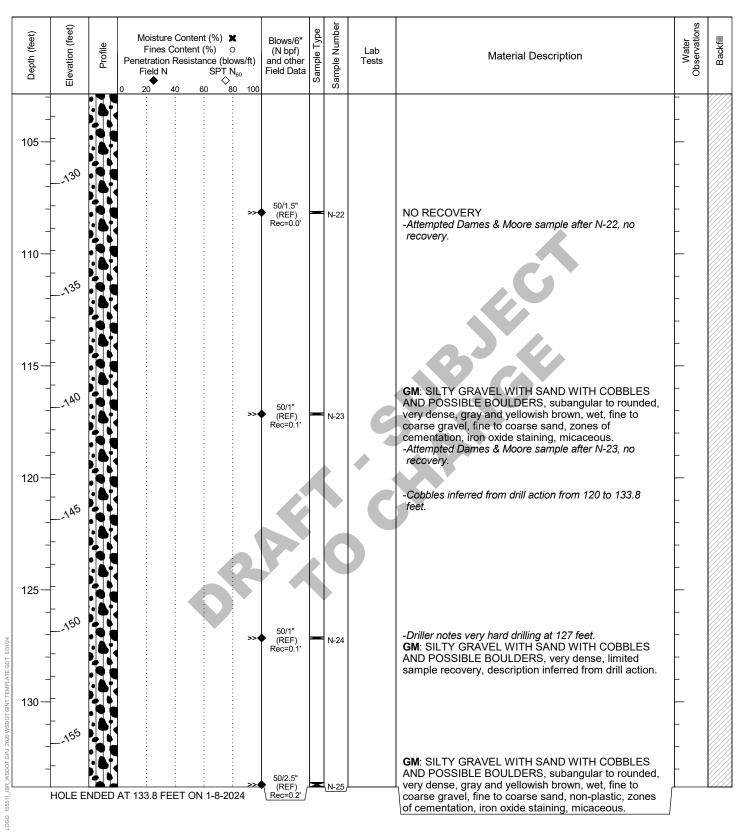
Project: Interstate Bridge Replacement Program

Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Pene F	Fines (tration ield N	Content (%) Content (%) Resistance S 40 60	0	Blows/6" (N bpf) and other Field Data		Sample Number	Lab Tests	Material Description	Water Observations	
-	55						(6) Rec=0.5'					_	
- 35— -			∘∢>	×			4 6 (10) Rec=0.6'	X	N-9	GS	SP : POORLY GRADED SAND, subangular to subrounded, loose, gray, wet, homogeneous, fine to coarse sand, with trace fine to coarse gravel, micaceous.		
-	- 60						4 5 5				SP: POORLY GRADED SAND, subangular to	-	
40	65		•	X			5 (10) Rec=0.4'		N-10		subrounded, loose, grayish brown, wet, homogeneous, fine to coarse sand, micaceous.	-	
- 45— -			•	X			9 8 (16) Rec=0.5'	X	N-11	C	SP : POORLY GRADED SAND, subangular to subrounded, medium dense, grayish brown, wet, homogeneous, fine to coarse sand, micaceous.	-	
-	70 									C		-	
50 — -					•	\$	8 26 22 (48) Rec=0.8'	X	N-12		[N-12A] 50.5 to 51: SP : POORLY GRADED SAND, subangular to rounded, grayish brown, wet, homogeneous, fine to coarse sand, micaceous. [N-12B] 51 to 52: GP-GM : POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded,	-	
- 55—	- - - - - 80		° X			>>	39 50/6" (REF) Rec=0.6'	X	N-13	GS	dense, grayish brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic. GP-GM : POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, very dense, grayish brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic.	-	
- - 60—	- - -					>>	50/2" (REF) Rec=0.1'	×	N-14		GP-GM : POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, very dense, reddish brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic.	-	
-						>>	63 100/5"				GP: POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular	- - 	
- 65—							(REF) Rec=0.4'		D-1		to rounded, gravish brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand.	_	

LOG OF BORING IBR-07

Project: Interstate Bridge Replacement Program


Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Moisture Content (%) X Fines Content (%) ○ Penetration Resistance (blows/ft) Field N SPT N ₆₀ 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
	0 - - - -		~	50/3" (REF) Rec=0.3'	×	N-15		GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, very dense, grayish brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand. - <i>Performed Dames & Moore sample after N-15 to</i> <i>obtain additional material.</i>	-	
	- - - -		~	50/2" (REF) Rec=0.1'	×	N-16		-Driller notes harder drilling at 73 feet. GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, very dense, gravish brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand. -Attempted Dames & Moore sample after N-16, no	-	
80-			~	50/1" (REF) Rec=0.1'		N-17		recovery. GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, very dense, grayish brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand, micaceous. -Attempted Dames & Moore sample after N-17, no recovery.	-	
- - 85— -			*	50/4" (REF) Rec=0.4		N-18		GM : SILTY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, very dense, gray and yellowish brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic, zones of cementation, iron oxide staining, micaceous. -Attempted Dames & Moore sample after N-18, no recovery. -Driller notes smoother drilling from 85 to 88 feet, sandy layer inferred.	-	
	- - - 		*	50/5" (REF) Rec=0.4'	×	N-19		-Cobbles inferred from drill action from 88 to 110 feet. GM : SILTY GRAVEL WITH SAND WITH COBBLES AND BOULDERS, subangular to rounded, very dense, reddish brown, wet, homogeneous, fine to coarse gravel, fine to coarse sand, non-plastic. -Boulder inferred from drill action from approximately 91 to 93 feet.	-	
106511_JBR_WSDOTGPU 2020 WSDOTGNTTEMPLATE.GDT 1 1 2 66	- - - 		~	50/3" (REF) Rec=0.1'	×	N-20		GM : SILTY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, very dense, limited sample recovery, description inferred from drill action. -Attempted Dames & Moore sample after N-20, no recovery.	-	
			~	50/1" (REF) Rec=0.0'		N-21		NO RECOVERY -Attempted Dames & Moore sample after N-21, no recovery.	-	
			XT PAGE (see last page for notes.						- - VERSIO	

LOG OF BORING IBR-07

Project: Interstate Bridge Replacement Program

Job Number: Y-12435 Route & MP Range: <u>SR 005 MP</u> 0.00 - 0.30

NOTES:

- 1. This is a summary log of the boring. Soil/rock descriptions are derived from visual field identifications and laboratory test data (where tested). See exploration log legend for explanation of graphics and abbreviations.
- The implied accuracy of the location information displayed on this log is typically sub-meter (X,Y) when collected using GPS methods by the Geotechnical Office and sub-centimeter (X,Y,Z) when collected by the Region survey crew.

LOG OF BORING IBR-07

Project: Interstate Bridge Replacement Program

Depth (feet) Elevation (feet)	Profile	Moisture Content (%) ¥ Fines Content (%) ○ Penetration Resistance (blows/ft) Field N SPT N ₆₀ ○ 20 40 60 80 100	Field Data E	Lab Tests	Material Description	Water Observations	Backfill
----------------------------------	---------	--	--------------	--------------	----------------------	-----------------------	----------

- Where oversized samplers were used, a correction was made to the N-value per the AASHTO Manual on Subsurface Investigations, 1988. Blow counts per 6-inch increment have not been corrected.
- 4. The groundwater level(s), if shown, represents observations made during drilling. The groundwater level should be considered approximate and will vary based on seasonal and other effects.

LOG OF BORING IBR-08

Project:	Interstate Bridge Replac	cement Prog	jram
Northing:	112,649.2 feet	Latitude:	45.621233 deg.
Easting:	1,084,033.3 feet	Longitude:	-122.674380 deg.
Elevation:	-25.0 feet	Collector:	Region Survey
Horizontal/	Vertical Datum: <u>IBR Pro</u>	oject / NAVE	088
Started:	November 14, 2023	Completed:	November 15, 2023

Job Number: Y-1	2435 Route & MP Range: SR 0	05 MP 0.00 - 0.30
Driller/Inspector:	Alex&Josh (Western States) / Cor	nnor McCord (S&W)
Start Card: <u>N/A</u>		
Drilling Method:	Sonic Rotary	<i>Hole Diam.:</i> 6 & 5 in
Equipment:Ge	oprobe 8150LS Sonic Track Rig	Rod Type:N/A
Hammer Type:	N/A	

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{60} 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
				Rec=7.0'		SC-1		-Driller using 5-inch ID standard sonic core barrel bit. GM : SILTY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subrounded to rounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, non-plastic to low plasticity, maximum recovered clast dimension of 4 inches, fractured clasts from sonic drilling.	-	
- - 10 -	- - - -			Rec=10.0'		SC-2	0.0	[SC-2A] 7 to 15: GM : SILTY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subrounded to rounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, non-plastic to low plasticity, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling.	-	
- 15- -	AO 					C		-A portion of Sample SC-2 was dropped while bagging. Description based on observed recovered material and drill action. [SC-2B] 15 to 17: GP-GM : POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to subrounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, non-plastic, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling.	-	
20 - 20	- 45			Rec=7.3'		SC-3		GP-GM : POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, non-plastic, maximum recovered clast dimension of 6 inches, fractured clasts from sonic drilling. -Approximately 3 feet of Sample SC-3 was lost while bagging. Description based on observed recovered	-	
1181 25 — - - - - - - - - - - - - - -	- 50		XT PAGE (see last page for notes)	Rec=7.7'		SC-4		<i>Driller switched to 4-inch ID standard sonic core barrel</i> <i>bit.</i> GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, fractured clasts from sonic drilling.		

LOG OF BORING IBR-08

Project: Interstate Bridge Replacement Program

Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) (N Penetration Resistance (blows/ft) and	ows/6" N bpf) d other Id Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Doolfill
- - - 35—			O Re	ec=7.7'		SC-4	GS	-Grain size analysis distribution may not be representative due to fractured clasts. GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, fractured clasts from sonic drilling.	-	
- - 40 -	- - - - - -		Re	ec=7.2'		SC-5		[SC-5A] 37.5 to 44: GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling.	- - - -	
- 45— -							0.	[SC-5B] 44 to 47.1: GM : SILTY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, non-plastic to low plasticity, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling.	- - -	
- 50—							C	-Grain size analysis distribution may not be	-	
- - 55—	80			ec=7.4'		SC-6	GS	representative due to fractured clasts. GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, micaceous, maximum recovered clast dimension of 4 inches, fractured clasts from sonic drilling, suspected grain-size segregation from sonic vibration.	-	
- - 60-	- - - - 8 ⁵							-Driller noted harder drilling at approximately 57 feet. [SC-7A] 57 to 60: GP : POORLY GRADED GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and brown, wet, fine to coarse gravel, fine to coarse sand, micaceous, maximum recovered clast dimension of 4 inches, fractured clasts from sonic drilling, suspected grain-size segregation from sonic vibration.	-	
- - 65—			Re	ec=9.9'		SC-7		[SC-7B] 60 to 67: GM/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND BOULDERS, subangular to rounded, gray and brown, moist, fine to coarse gravel, fine to coarse sand, low to medium plasticity, iron oxide staining, micaceous, iron oxide staining, micaceous, maximum recovered clast dimension of 12 inches, fractured clasts from sonic drilling. <i>-Boulder inferred from drilling action from 64.4 to 65.4</i> <i>feet.</i>	-	

CONTINUED NEXT PAGE (see last page for notes)

LOG OF BORING IBR-08

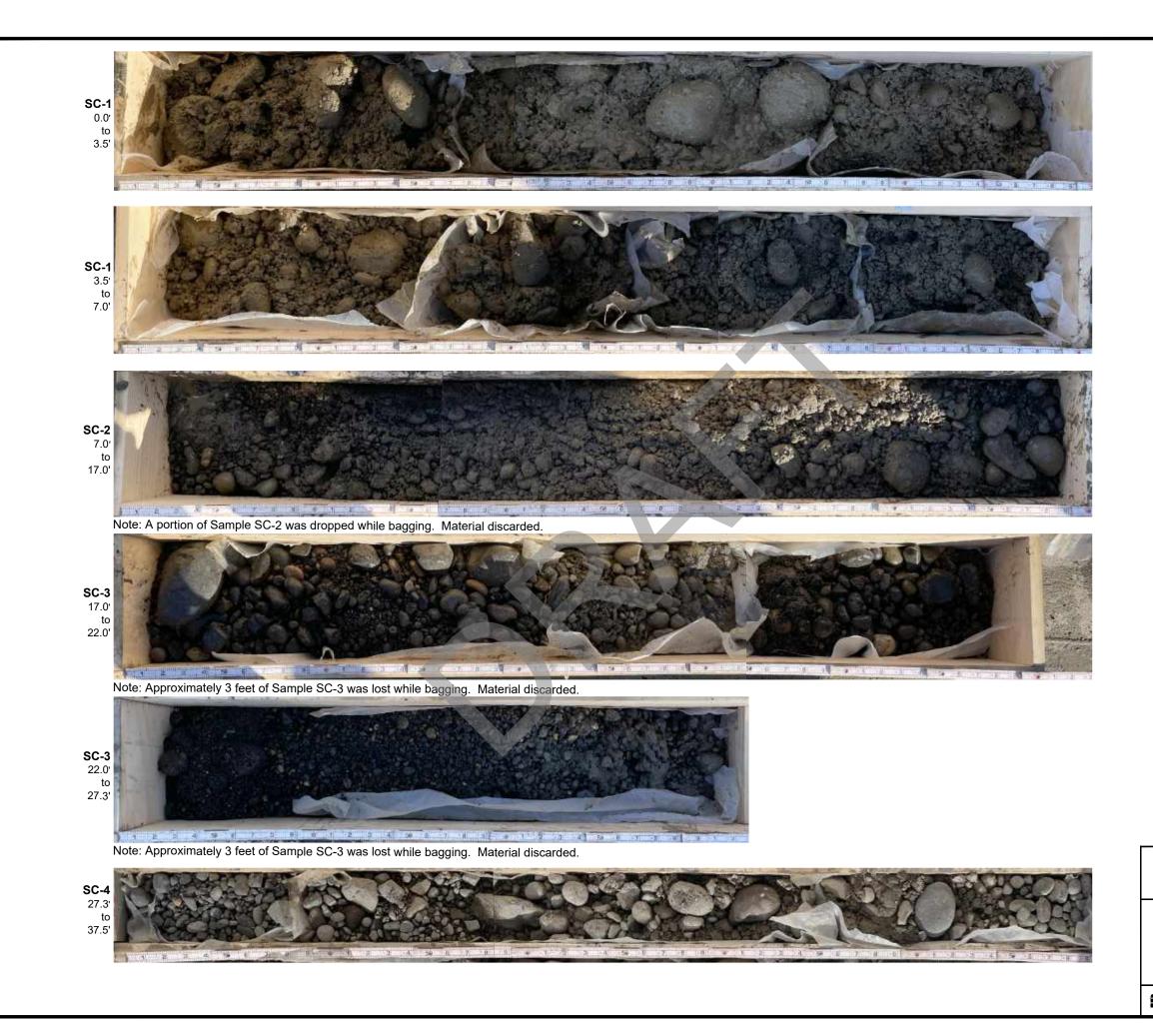
Project: Interstate Bridge Replacement Program

Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Penetration I Field N	Content (%) Resistance (blo SPT N 60 60 8		Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
	+					Rec=9.9'		SC-7			-	
70-	95 95 		0			Rec=6.6'		SC-8	GS	-Grain size analysis distribution may not be representative due to fractured clasts. GP-GM : POORLY GRADED GRAVEL WITH SILT AND SAND WITH COBBLES AND BOULDERS, subangular to rounded, gray and brown, moist, fine to coarse gravel, fine to coarse sand, low plasticity, zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling.	-	
75-								-			-	
80-						Rec=12.2'		SC-9	C	GM/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and yellowish brown, moist, fine to coarse gravel, fine to coarse sand, low to medium plasticity, zones of cementation, iron oxide staining, micaceous, fractured clasts from sonic drilling.	-	
85-									· C		-	
	+				2			C		-Cobble inferred from drilling action from 87.5 to 88.1 feet.	-	
900 - 900 900 900	-115		0		•	Rec=10.3'		SC-10	GS	-Grain size analysis distribution may not be representative due to fractured clasts. GM/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND BOULDERS, subangular to rounded, gray and yellowish brown, moist, fine to coarse gravel, fine to coarse sand, low to medium plasticity, zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 3 inches, fractured clasts from sonic drilling. -Boulder inferred from drilling action from 94 to 95.5 feet.	-	
STANDARD BORING LOG-SAW LOGO 105511_BR, WSDOTGFU 20 - 001	725					Rec=14.8'		SC-11		-Driller noted very hard drilling at 96 feet. -Sample SC-11 fell out of barrel while bagging. Description based on observed disturbed material and drill action. GW/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and yellowish brown, moist, fine to coarse gravel, fine to coarse sand, low to medium plasticity, zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 5 inches, fractured clasts from sonic drilling.	- - - - - - - - -	

LOG OF BORING IBR-08

Project: Interstate Bridge Replacement Program


Job Number: Y-12435 Route & MP Range: SR 005 MP 0.00 - 0.30

Depth (feet)	Elevation (feet)	Profile	Fines Content (%) Penetration Resistance (blows/ft) Field N SPT N_{50} 0 20 40 60 80 100	Blows/6" (N bpf) and other Field Data	Sample Type	Sample Number	Lab Tests	Material Description	Water Observations	Backfill
	- - - - - - - - -			Rec=14.8'		SC-11		GM/GC : SILTY/CLAYEY GRAVEL WITH SAND WITH COBBLES AND POSSIBLE BOULDERS, subangular to rounded, gray and yellowish brown, moist, fine to coarse gravel, fine to coarse sand, low to medium plasticity, zones of cementation, iron oxide staining, micaceous, maximum recovered clast dimension of 5 inches, fractured clasts from sonic drilling.	-	

HOLE ENDED AT 110.9 FEET ON 11-15-2023

NOTES:

- 1. This is a summary log of the boring. Soil/rock descriptions are derived from visual field identifications and laboratory test data (where tested). See exploration log legend for explanation of graphics and abbreviations.
- 2. The implied accuracy of the location information displayed on this log is typically sub-meter (X,Y) when collected using GPS methods by the Geotechnical Office and sub-centimeter (X,Y,Z) when collected by the Region survey crew.
- 3. Where oversized samplers were used, a correction was made to the N-value per the AASHTO Manual on Subsurface Investigations, 1988. Blow counts per 6-inch increment have not been corrected.
- 4. The groundwater level(s), if shown, represents observations made during drilling. The groundwater level should be considered approximate and will vary based on seasonal and other effects.

EIII SHANNON & WILSON

Sheet 1 of 4

BORING IBR-08 CORE PHOTOGRAPHS

May 2024

105511

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

Sheet 2 of 4

105511

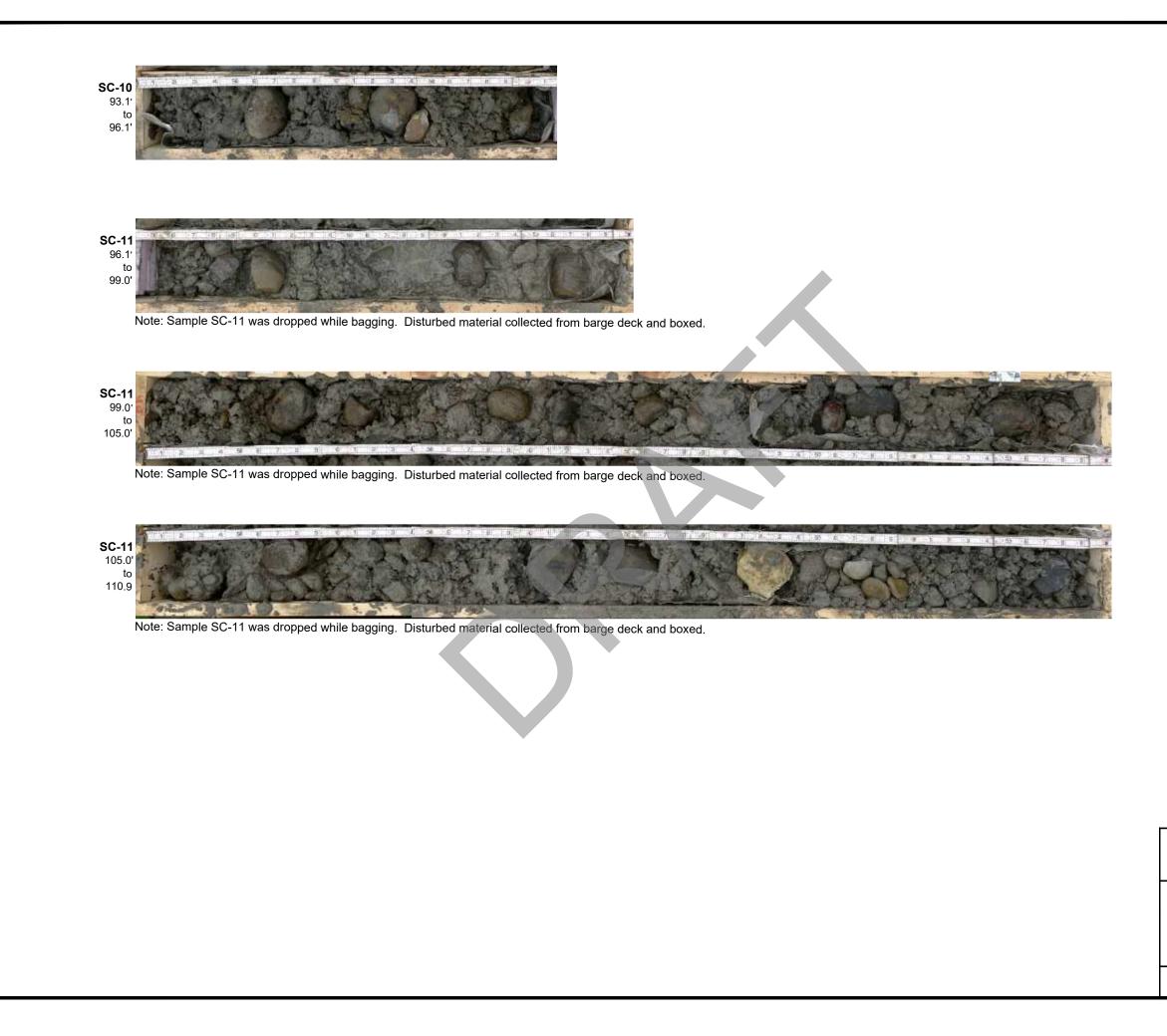
CORE PHOTO

May 2024

BORING IBR-08 CORE PHOTOGRAPHS

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

Sheet 3 of 4


CORE PHOTOGRAPHS

May 2024

105511

BORING IBR-08

EIII SHANNON & WILSON

Sheet 4 of 4

105511

May 2024

BORING IBR-08 CORE PHOTOGRAPHS

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

APPENDIX B. NORTH PORTLAND HARBOR BORING LOGS AND CORE PHOTOGRAPHS TABLE OF CONTENTS

1.	GENERAL	B-1
2.	DRILLING OVERVIEW	B-1
3.	GEOTECHNICAL DRILLING AND SAMPLING METHODOLOGY	В-2
3.1	Mud Rotary Drilling Technique	В-2
	3.1.1 Standard Penetration Test (SPT) Sampling	В-2
	3.1.2 Geotechnical Relatively Undisturbed Sampling	В-З
3.2	Rotosonic Drilling Technique	В-З
	3.2.1 Rotosonic Continuous Sampling	В-З
4.	BOREHOLE ABANDONMENT	В-З
5.	MATERIAL DESCRIPTIONS	В-4
6.	BORING LOGS AND CORE PHOTOGRAPHS	В-4

TABLES

Table B-1. North Portland Harbor Drilling Summary	B-1
---	-----

ATTACHMENTS

Drill Logs and Core Photographs Boring IBR-01 Boring IBR-02

1. GENERAL

Shannon & Wilson drilled two geotechnical borings in the North Portland Harbor channel of the Columbia River for the IBR Project. Boring logs and core photographs from the six borings drilled in the main channel of the Columbia River are presented separately in Appendix A. All borings were drilled from a barge over water. Table B-1 summarizes exploration designation, borehole coordinates, depth, and other details. The borings were completed between November 16, 2023, and January 25, 2024. Both borings were surveyed during drilling by the design team relative to the IBR Project's Local Datum Plane (LDP) system. Elevations for the project are North American Vertical Datum of 1988 (NAVD88). Exploration locations are shown on the Site and Exploration Plan, Figure 1-3.

This appendix describes the techniques used to advance and sample the borings, presents logs of the materials encountered during drilling, and details borehole backfill. Downhole suspension velocity testing was also conducted in the mud rotary boring. These tests are described with their results in Appendix C, Borehole Suspension Logging Results.

Exploration Designation		U	Mudline Elevation (ft) ^B		Drilling Method	Start Date	End Date
IBR-01	107606.2	1081681.0	-9.3	209.9	Rotosonic	11/16/2023	11/21/2023
IBR-02	107927.5	1082095.2	-10.2	225.8	Mud Rotary	1/9/2024	1/25/2024

Table B-1. North Portland Harbor Drilling Summary

Notes:

A IBR Project LDP, defined as Washington State Plane South/1.0000576 (US Survey Feet)

B NAVD88 (US Survey Feet)

2. DRILLING OVERVIEW

The geotechnical borings were drilled with two drill rigs provided and operated by Western States Soil Conservation, Inc. (Western States), of Hubbard, Oregon. The borings were drilled from a floating barge that was provided and operated by Mark Marine Service, Inc., of Washougal, Washington. One boring was drilled using mud rotary techniques and one boring was drilled using rotosonic techniques. Drilling supervision, including sample collection and field logging of subsurface material, was performed by Shannon & Wilson.

3. GEOTECHNICAL DRILLING AND SAMPLING METHODOLOGY

3.1 Mud Rotary Drilling Technique

For mud rotary drilling performed over water, before the borehole is started, a steel circulation casing is pushed and/or driven to a depth of approximately 10 to 15 feet below the mud line (or more depending on conditions), sealing off any circulating drill fluids from the river. Often, the circulation casing is pushed to refusal using the drill rig hydraulic system or driven with a casing hammer. Once the casing is sealed below the mud line, the boring is advanced using a tri-cone bit and a string of hollow drill rods (narrower than the bit) through which bentonite drilling mud is pumped. The mud is mixed on site using water and powdered bentonite. The drilling mud serves to cool the bit, keep the hole open, and flush the cuttings to the surface. Returning drill mud is typically passed through the circulation casing from the borehole to a screen and tub that is situated over the circulation casing on the deck of the barge. The screen collects the drill cuttings from the borehole, and the tub collects the mud for recirculation back into the hole. If fine-grained, cohesive soils are encountered, other styles of drill bits may also be used with the mud-rotary method, such as scraper or drag bits.

3.1.1 Standard Penetration Test (SPT) Sampling

Disturbed samples were collected in the mud rotary borings at 2-, 5-, or 10-foot intervals using a standard 2-inch outside-diameter (O.D.) split spoon sampler in conjunction with Standard Penetration Testing. In a Standard Penetration Test (SPT), ASTM D1586, the sampler is driven 18 inches into the soil using a 140-pound hammer dropped 30 inches. The number of blows required to drive the sampler the last 12 inches is defined as the standard penetration resistance, or N-value. The SPT N-value provides a measure of in situ relative density of cohesionless soils (silt, sand, and gravel) and the consistency of cohesive soils (silt and clay). In some instances, a 3-inch-O.D. Dames & Moore sampler was used to collect disturbed samples. A 140-pound hammer was used to drive these larger-diameter samplers. All disturbed samples were visually identified and described in the field at the time of sampling, sealed in a labeled plastic jar or bag to retain moisture, and returned to the laboratory for additional examination and testing.

SPT N-values can be significantly affected by several factors, including the efficiency of the hammer used. Measured efficiencies of the automatic hammers used for this project, based on available information we received from our drilling subcontractor, are shown on the boring logs. The field recorded N-values are summarized on the boring logs. Field recorded N-values, shown numerically on the logs, have not been corrected for hammer efficiency, overburden pressure, flexure of the rods, or silt content. An SPT was considered to have met refusal where more than 50 blows were required to drive the 2-inch-O.D. sampler 6 inches (100 blows for larger-O.D. samplers). In this case, the blows are reported as 50 over the distance driven in 50 blows, such as 50/4". Sample recovery is identified as a percentage of material retained for the length the sampler was driven.

3.1.2 Geotechnical Relatively Undisturbed Sampling

Relatively undisturbed samples were collected in some mud rotary borings in 3-inch-OD thin-wall Shelby tubes, which were hydraulically pushed into the undisturbed soil at the bottoms of boreholes. The soils exposed at the ends of the tubes were examined and described in the field. After examination, the ends of the tubes were sealed to preserve the natural moisture of the samples. The sealed tubes were stored in the upright position, and care was taken to avoid shock and vibration during their transport and storage in the laboratory.

3.2 Rotosonic Drilling Technique

During rotosonic drilling, also referred to as sonic rotary drilling, an inner core barrel is rotated while an oscillator in the drill head imposes a high frequency vibration into the drill rods and core barrel. This forces the core barrel and drill bit to be physically vibrating up and down in addition to being forced down and rotating. These three forces, vibration, rotation, and downward force combine to advance the core barrel through soil or bedrock. As the core barrel is advanced the center fills with the soil or rock it is being advanced through. When the core barrel is advanced a certain distance determined by the length of the core barrel it is stopped. An over-casing is advanced over the outside of the core barrel to the same depth as the core barrel tip using the same sonic vibration, rotation and downward force. The over casing protects the borehole integrity and prevents the borehole from collapsing as the core barrel is retrieved. Multiple over casings may be used to maintain borehole integrity and reduce the outside forces on the inner core barrel and inner casings. The inner core barrel is retracted to the surface where it is emptied into long cylindrical bags as a long soil core or rock core sample. This alternating process of core barrel and over casing advancement with core barrel retrieval is continued to the terminal depth of the borehole.

3.2.1 Rotosonic Continuous Sampling

To retrieve a core sample, the core barrel is withdrawn from the hole and the sample is extruded into tubular plastic bags using vibration. During this exploration program, the boreholes were advanced in five- to twenty-foot intervals while continuously core sampling. The bags of approximately 4- to 6- inch diameter core were placed into wooden boxes and logged and photographed by a Shannon & Wilson geology staff member. Due to disturbance to the soil column during drilling and bagging of the sample, sample recoveries and discreet grab sample depths should be considered approximate.

4. BOREHOLE ABANDONMENT

Once drilling and testing were completed, all borings were backfilled with a high-solids bentonite cement grout, in accordance with Oregon Water Resources Department regulations.

5. MATERIAL DESCRIPTIONS

In the field, soil samples were described and identified in accordance with Chapter 5 of the ODOT Geotechnical Design Manual (2023). The ASTM International (ASTM) D2488 Visual-Manual method was also used as a guide in determining the key diagnostic properties of soils. Consistency, color, relative moisture, degree of plasticity, peculiar odors, and other distinguishing characteristics of the samples were noted. Once returned to the laboratory, the samples were re-examined, various standard laboratory tests were conducted, and the field descriptions and identifications were modified where necessary. We refined our visual-manual soil descriptions and identifications based on the results of the laboratory tests, using elements of the Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM D2487. Please refer to the ODOT Geotechnical Design Manual (2023) and ASTM D2487 for definitions of descriptive terminology used in the boring logs.

The ODOT Geotechnical Design Manual requires an estimated percentage by volume of cobble and/or boulder constituents, to be based on "recovered intersected or observed lengths and/or drill rig behavior." Cobbles are defined as "particles of rock that will pass a 12-inch square opening and be retained on a 3-inch sieve" and boulders are defined as "particles of rock that will not pass a 12-inch square opening." Due to the limitations inherent in obtaining representative samples of particles larger than the sampler diameter, the rough volume estimates provided on the logs should not be relied on. Any cobble and boulder estimates provided in a Geotechnical Baseline Report (or similar document) for the project shall take precedence over the volume estimates on these boring logs. The soil group name in ASTM D2487 and D2488 is based on the portion of the soil sample passing the 3-inch sieve. Refer to the photographs of samples obtained through rotosonic core drilling for estimating the quantities of cobble/boulder constituents recovered from those explorations. It should be noted that the samples presented in the photographs have been disturbed and the finer- and coarser-grained fractions can be segregated during drilling, sampling, and handling.

6. BORING LOGS AND CORE PHOTOGRAPHS

Summary logs of the borings are attached to this appendix. Logs of borings that included soil coring are followed by core photographs. Soil descriptions and interfaces on the logs are interpretive and actual changes may be gradual. The left-hand portion of the drill logs gives depth, individual sample intervals and identifications, percent recovery, Standard Penetration Test data, and natural moisture content measurements. Material descriptions are shown in the center of the drill log, and the right-hand portion provides a graphic log, selected laboratory test results (Atterberg limits and percent fines), miscellaneous comments, and a graphic depicting hole backfill details.

DRILL LOG OREGON DEPARTMENT OF TRANSPORTATION

			DRI OREGON DEPARTME	LL LOG NT OF TRANSPO	ORTAT	ΓΙΟΝ		Page 1	of 8
							Н	Hole No. IBR-01	
Project Interstate Bri	dge Replacement	Progran	n	Purpose Bridge	e Struct	ture	E	E.A. No. N/A	
Highway 001				County Multro	omah		K	Key No. N/A	
Hole Location No	orthing: 107,606.2	1	Easting: 1,0	81,681.0			S	Start Card No. N/A	
Equipment Geoprobe	8150LS Sonic Tr	ack Rig		Driller Weste	rn Stat	es/John & Alex	В	Bridge No. N/A	
Project Geologist Ver	onica Biesiada, R	G		Recorder Conno	or McCo	ord	G	Ground Elev9.3 ft.	
Start Date November	16, 2023	End Da	ate November 21, 2023	Total Depth 209	.00 ft		Т	Tube Height N/A	
<u>Test Ty</u> "A" - Auger Core "X" - Auger "C" - Core, Barrel Type "N" - Standard Penetratio "D&M" - Dames & Moor "U" - Undisturbed Sampl	"GP" - GeoProbe [®] "T" - Test Pit n re	J - Joir F - Fau B - Be	llt C - Curved dding U - Undulating bliation St - Stepped	<u>Surface Roughness</u> P - Polished SI - Slickensided Sm - Smooth R - Rough VR - Very Rough		Typic Drilling Methods WL - Wire Line HS - Hollow Stem Aug DF - Drill Fluid SA - Solid Auger CA - Casing Advancer HA - Hand Auger	er	illing Abbreviations Drilling Remarks LW - Lost Water WR - Water Return WC - Water Color DP - Down Pressur DR - Drill Rate DA - Drill Action	
Depth (ft) Test Type, No. Percent Recovery	Driving Resistance Discontinuity Data yoo Or RQD%	Percent Natural Moisture	<u>Material Descript</u> SOIL: Soil Name, USCS, Color, Pl Moisture, Consistency/Re Texture, Cementation, St ROCK: Rock Name, Color, Weath Discontinuity Spacing, Jc Core Recovery, Formatio	asticity, elative Density, ructure, Origin. ering, Strength, pint Filling,	Ľ	Init Description	Graphic Log	Drilling Methods, Size and Remarks Water Level/	Date Backfill/
0 S1 60			S-1 (0.00-12.50) SAND to SAND with gravel, SP; dark gray (2.5Y 4/1), wet, 1 gravel, fine to coarse sand, micaceous	fine subrounded	SAN trace SP; o 4/1), subr fine	- 14.00 D to SAND with a silt and gravel, dark gray (2.5Y wet, fine ounded gravel, to coarse sand, aceous.		Borehole drilled from barge using rotosonic drilling technique (8-inch hole). Driller using 6-inch ID standard sonic core barrel bit. S1: 1% gravel, 98% sand, 1% fines.	4.7
10 - S2 55 S2A S2B 15 -			S- 2 (12.50-23.40). S- 2A (12.50-14.00) SAND to SAND or gravel, SP; dark gray (2.5Y 4/1), wet, t gravel, fine to coarse sand, micaceous S- 2B (14.00-23.40) SAND with some gray (2.5Y 4/1), nonplastic fines, wet, t micaceous.	fine subrounded s. e silt, SP-SM; dark	SAN SP-S (2.5Y	0 - 30.00 D with some silt, SM; dark gray (4/1), nonplastic , wet, fine to		Sand heave observed in sonic casing before Sample S2.	

rojec	t Name	Intersta	te Bridge	e Replac	ement P	rogram Hole No. IBR-01		Page 2	of
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance	Discontinuity Data 20 Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description	Drilling Methods, Size and Remarks Water Level/	Date
9 20 -								S2B: 89% sand, 11% fines.	
25 -	<u>S3</u> S3A	25				S- 3 (23.40-33.60) Poor sample recovery. S- 3A (23.40-30.00) SAND with some silt, SP-SM; dark gray (2.5Y 4/1), nonplastic fines, wet, fine to coarse sand, micaceous.		Driller switched to 4-inc ID auger sonic core barrel bit (6-inch hole).	h i i i i i i i i i i i i i i i i i i i
30 -	S3B					S- 3B (30.00-33.60) SAND with trace silt, SP; dark gray (2.5Y 4/1), wet, fine to medium sand, micaceous.	30.00 - 41.00 SAND with trace silt, SP; dark gray (2.5Y 4/1), wet, fine to medium sand, micaceous.		
5 –	S4 S4A	60				S-4 (33.60-43.60). S-4A (33.60-41.00) SAND with trace silt, SP; dark gray (2.5Y 4/1), wet, fine to medium sand, micaceous.		Driller switched to 4-inc ID flapper sonic core barrel bit. S4A: 97% sand, 3% fines.	h)))))))))))))))))))
0 –								Driller noted soft drilling from approximately 38 t 41 feet.	
	S4B					S- 4B (41.00-43.60) Silty SAND, SM; dark gray (2.5Y 4/1), nonplastic to low plasticity fines, moist to wet, fine sand, laminated, micaceous, trace organics and wood fragments.	41.00 - 45.10 Silty SAND, SM; dark gray (2.5Y 4/1), nonplastic to low plasticity fines, moist to wet, fine sand, laminated,	S4B: 58% sand, 42% fines.	
-5	S5 S5A S5B	60				 S-5 (43.60-53.80). S-5 (43.60-45.10) Silty SAND, SM; dark gray (2.5Y 4/1), nonplastic to low plasticity fines, moist to wet, fine to medium sand, laminated, micaceous, trace organics and wood fragments. S-5 R (45.10.47.60) Clavey SII T with trace sand MH; 	micaceous, trace organics and wood fragments.	Approximately 0.8 feet of sand heave measured before Sample S5.	of v
8	S5B					S-5B (45.10-47.60) Clayey SILT with trace sand, MH; dark grayish brown (2.5Y 4/2), medium plasticity, moist, fine sand, micaceous, trace organics and wood fragments.	45.10 - 47.60 Clayey SILT with trace sand, MH; dark grayish brown (2.5Y 4/2), medium plasticity, moist, fine	Atterberg Limits S5B: LL=52, PL=31, PI=21; 7% sand, 93% fines.	

Project	t Name	Intersta	ate Bridge	Replace	ement P	rogram		Hole No.	IBR-01			Page	3 of
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance	Discontinuity Data 2 Or RQD%	Percent Natural Moisture	ROCK: R	Material Der il Name, USCS, Cc Moisture, Consiste Texture, Cementat Rock Name, Color, Discontinuity Spac Core Recovery, Fo	olor, Plasticity, ency/Relative I tion, Structure, Weathering, St cing, Joint Filli	Density, Origin. trength, ng,	Unit Description	Graphic Log	Drilling Methods, Size and Remarks	Water Level/ Date
48 50 -	S5C					S-5C (47.6(4/1) to dark g plasticity fine	0-53.80) Silty SANI grayish brown (2.5) s, moist, fine to me	D, SM; dark gr Y 4/2), nonplas edium sand, m	ay (2.5Y tic to low icaceous.	sand, micaceous, trace organics and wood fragments. 47.60 - 53.80 Silty SAND, SM; dark gray (2.5Y 4/1) to dar grayish brown (2.5Y 4/2), nonplastic to lor plasticity fines, mois fine to medium sand, micaceous.	k v	Driller noted sol from 50 to 75 fe	it drilling
55 –	S6	0				S-6 (53.80-	64.00) No Recover	ry.		53.80 - 74.20 No Recovery.		Driller switched ID auger sonic of barrel bit. No re Attempted to re sample by switc 4-inch ID flappe core barrel bit.	core covery. trieve
60 -							2	P				No sample recc from 53.8 to 74. Inferred Silty S/ SAND with som SM/SP-SM, bas drill action.	2 feet. AND to le silt,
65 –	S7	0				S-7 (64.00-	74.20) No Recover	ry.				Driller using 4-in flapper sonic cc bit.	nch ID re barrel
70 -													> > > > > > > > > > > > > > > > > > >
75 - 76	S8 S8A	40				gray (2.5Y 4/	82.50). J-76.70) SAND witi (1), nonplastic fines d, micaceous.	h some silt, SF s, moist to wet,	P-SM; dark fine to	74.20 - 76.70 SAND with some silt SP-SM; dark gray (2.5Y 4/1), nonplastic		S8A: 94% sand fines.	, 6%

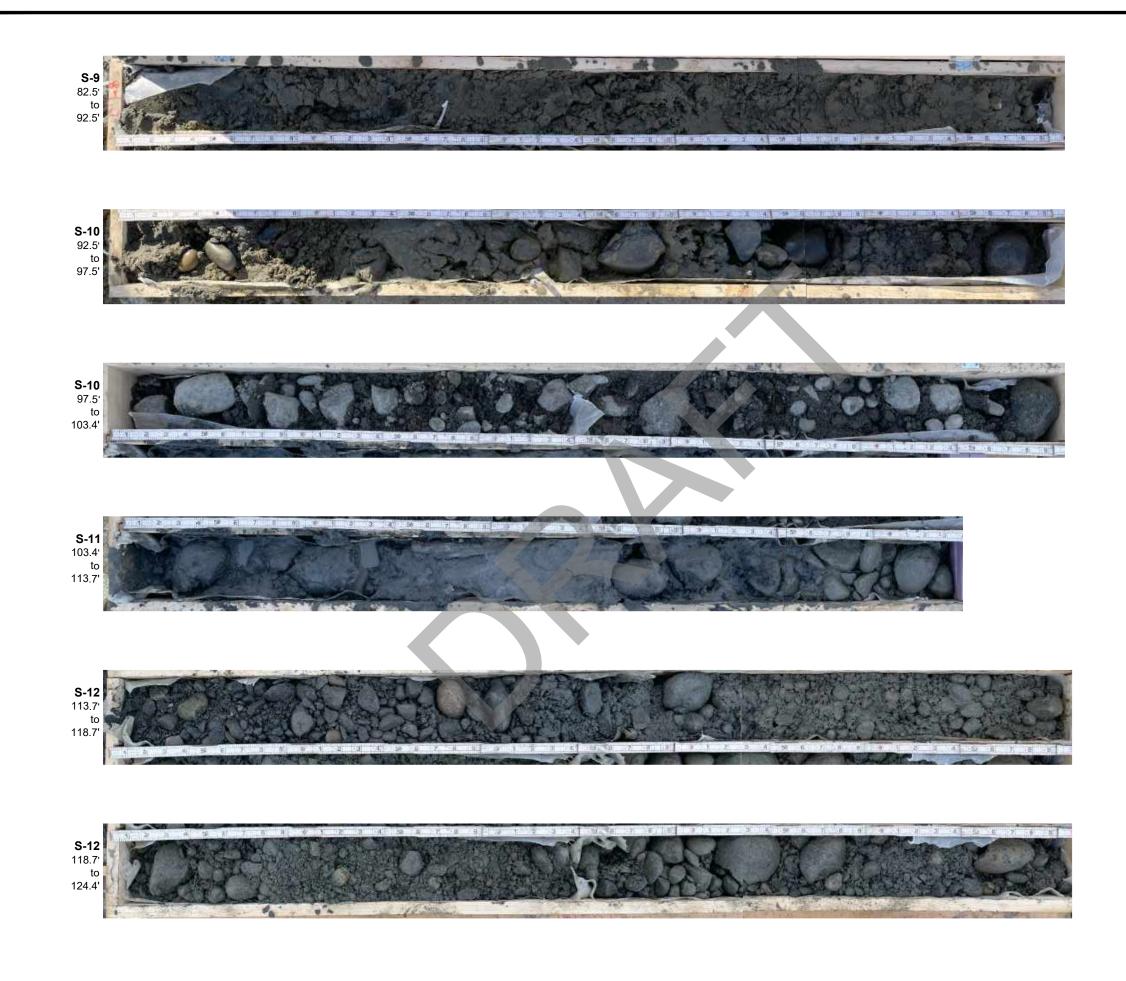
Project Na	ame Int	terstat	e Bridge	Replace	ement P	rogram Hole No. IBR-01		Page 4	of 8
	Test Type, No.	Percent Recovery	Driving Resistance	Discontinuity Data 20 Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description Graphic Food	Drilling Methods, Size and Remarks Water Level/	Date Backfill/ Instrumentation
76 Si Si - 80 -	8B					S- 8B (76.70-82.50) Silty SAND, SM; dark gravish brown (2.5Y 4/2), nonplastic to low plasticity fines, wet, fine to medium sand, stratified with Sandy SILT, ML, micaceous, trace organics and wood fragments.	fines, moist to wet, fine to medium sand, <u>micaceous</u> . 76.70 - 83.60 Silty SAND, SM; dark grayish brown (2.5Y 4/2), nonplastic to low plasticity fines, wet, fine sand, stratified with Sandy SILT, ML, micaceous, trace organics and wood fragments.		···· ···· ···· ···· ···· ···· ···· ···· ····
S	59 1 9A 9B	100				S-9 (82.50-92.50). S-9A (82.50-83.60) Silty SAND, SM; dark grayish brown (2.5Y 4/2), nonplastic to low plasticity fines, wet, fine sand, stratified with Sandy SILT, ML, micaceous, trace organics and wood fragments. S-9B (83.60-92.50) Silty SAND with trace gravel, SM; dark grayish brown (2.5Y 4/2) to olive brown (2.5Y 4/3), nonplastic fines, moist to wet, fine subrounded to rounded gravel, fine to coarse sand, micaceous.	83.60 - 92.50 Silty SAND with trace gravel, SM; dark grayish brown (2.5Y 4/2) to olive brown (2.5Y 4/3), nonplastic fines, moist to wet, fine subrounded to rounded gravel, fine to coarse sand, micaceous.	Atterberg Limits S9A: LL=22, PL=20, PI=2; 62% sand, 38% fines. Driller noted harder drilling at approximatel 86 feet.	······································
- 90 -								NOTE: Grain size analysis distributions from samples below 92.5 feet may not be representative due to fractured clasts.	
- 95 -	10 1 10A 10B 10C	100				S- 10 (92.50-103.40). S- 10A (92.50-93.70) Gravelly SAND with trace silt, SP; dark gray (2.5Y 4/1) to dark grayish brown (2.5Y 4/2), moist to wet, fine to coarse subrounded to well rounded gravel, fine to coarse sand, micaceous. S- 10B (93.70-96.10) SILT with some sand and trace gravel, with cobbles, ML; dark gray (2.5Y 4/1) to dark grayish brown (2.5Y 4/2), nonplastic, moist to wet, estimated 30-40% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 6 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand. S- 10C (96.10-103.40) Sandy GRAVEL with trace silt, with cobbles and possible boulders, GP; gray (2.5Y 5/1) to dark gray (2.5Y 4/1), moist to wet, estimated 25-35% by volume R4-R5 subrounded basalt cobbles with	92.50 - 93.70 Gravelly SAND with trace silt, SP; dark gray (2.5Y 4/1) to dark grayish brown (2.5Y 4/2), moist to wet, fine to coarse subrounded to well rounded gravel, fine to coarse sand, micaceous. 93.70 - 96.10 SILT with some sand and trace gravel, with	Driller switched to 4-ind ID standard sonic core barrel bit. S10A: 38% gravel, 58% sand, 4% fines. Atterberg Limits S10B: LL=NP, PL=NP, PI=NF 7% gravel, 17% sand, 76% fines; original field sample had 12% cobbles by weight.	
- 100 -						maximum recovered clast dimension of 6 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, fractured clasts from sonic drilling.	cobbles, ML; dark gray (2.5Y 4/1) to dark grayish brown (2.5Y 4/2), nonplastic, moist to wet, estimated 30-40% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 6 inches, fine to coarse subrounded to well rounded gravel, fine	S10C: 64% gravel, 33% sand, 3% fines; origina field sample had 4% cobbles by weight.	
S	511	50				S- 11 (103.40-113.70) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; gray (2.5Y 5/1) to dark gray (2.5Y 4/1), nonplastic fines, wet,	to coarse sand. 96.10 - 113.70 Sandy GRAVEL with trace to some silt,	S11: 53% gravel, 35% sand, 12% fines; origin field sample had 17%	al

Project	t Name	Intersta	ate Bridge	Replace	ement P	rogram Hole No. IBR-01			Page 5	of 8
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance lioS	Discontinuity Data & Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	<u>Unit Description</u>	Graphic Log	Drilling Methods, Size and Remarks Water Level/	Date Backfill/ Instrumentation
105 105 - 105 -						estimated 40-50% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 7 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, fractured clasts from sonic drilling.	with cobbles and possible boulders, GP/GP-GM; gray (2.5Y 5/1) to dark gray (2.5Y 4/1), nonplastic fines, moist to wet, estimated 25-50% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 7 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, fractured clasts from sonic drilling.		cobbles by weight.	
115 -	S12	100				S-12 (113.70-124.40) GRAVEL with some sand and trace silt, with cobbles and possible boulders, GW; gray (2.5Y 5/1), dark gray (2.5Y 4/1), and dark grayish brown (2.5Y 4/3), moist to wet, estimated 25-35% by volume R4-R5 subrounded basait cobbles, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, fractured clasts from sonic drilling, cobbles and boulders inferred from drill action.	113.70 - 135.60 GRAVEL with some sand and trace silt, with cobbles and boulders, GW; gray (2.5Y 5/1), dark gray (2.5Y 4/1), and dark grayish brown (2.5Y 4/3), moist to wet, estimated 25-50% by volume R4-R5 basait cobbles and boulders with maximum		S12: 72% gravel, 25% sand, 3% fines.	
120 -							recovered clast dimension of 16 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, fractured clasts from sonic drilling.			
125 -	S13	13				S- 13 (124.40-135.60) GRAVEL with some sand and trace silt, with cobbles and boulders, GW; dark gray (2.5Y 4/1), moist to wet, estimated 40-50% by volume R4-R5 basalt cobbles and boulders with maximum recovered clast dimension of 16 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, low recovery, fractured clasts from sonic drilling.			Drill action indicates boulder from approximately 125 to 127 feet.	
130 -										

Projec	t Name	Intersta	ate Bridge	e Replac	ement P	rogram Hole No. IBR-01		Page 6	of 8
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance	Discontinuity Data & Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description	Drilling Methods, Size and Remarks	Water Level/ Date Backfill/
133 135 - 140 -	S14	80				S- 14 (135.60-145.40) GRAVEL with some sand and silt, with cobbles and possible boulders, GP-GM; gray (2.5Y 5/1), dark gray (2.5Y 4/1), and dark grayish brown (2.5Y 4/3), nonplastic fines, wet, estimated 35-45% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 4 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, fractured clasts from sonic drilling.	135.60 - 146.60 GRAVEL with some sand and silt, with cobbles and possible boulders, GP-GM; gray (2.5Y 5/1), dark gray (2.5Y 4/1), and dark grayish brown (2.5Y 4/3), nonplastic fines, wet, estimated 20-45% by volume R4-R5 subrounded basalt cobbles with maximum recovered		
145 -	S15 S15A S15B	100				S- 15 (145.40-154.40). S- 15A (145.40-164.60) GRAVEL with some sand and silt, with cobbles and possible boulders, GP-GN; gray (2.5Y 5/1), dark gray (2.5Y 4/1), and dark grayish brown (2.5Y 4/3), nonplastic fines, wet, estimated 20-30% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 3 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, fractured clasts from sonic drilling. IS- 15B (146.60-154.40) Silty/Clayey GRAVEL with some sand, with cobbles and possible boulders, GM/GC; dark gray (2.5Y 4/1), dark grayish brown (10YR 4/2), and dark yellowish brown (10YR 4/4), nonplastic to medium plasticity fines, moist, estimated 20-30% by volume	clast dimension of 4 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, fractured clasts from sonic drilling. 146.60 - 171.00 Silty/Clayey GRAVEL with some sand, with cobbles and possible boulders, GM/GC; dark gray (2.5Y 4/1), dark grayish brown (10YR 4/2), and dark	Driller noted harded drilling at approxim 146 feet. S15B: 62% gravel sand, 13% fines.	nately
150 -	S16	100				 S- 16 (154.40-163.70) Silty/Clayey GRAVEL with some sand, with cobles and possible source of the sour	(10YR 4/4), nonplastic to medium plasticity fines, moist, estimated 15-30% by volume R4-R5, subrounded basalt cobbles with maximum recovered clast dimension of 3 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, iron oxide staining, zones of weak cementation, fractured clasts from sonic drilling.		
160 - <u>162</u>									

Projec	t Name	Intersta	ate Bridg	e Replac	ement P	rogram Hole No. IBR-01			Page 7	of 8
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance	Discontinuity Data 2 Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description	Graphic Log	Drilling Methods, Size and Remarks	Water Level/ Date Backfill/
162	<u>S17</u> S17A	100				S- 17 (163.70-178.70). S- 17A (163.70-171.00) Silty/Clayey GRAVEL with some sand, with cobbles and possible boulders, GM/GC; dark gray (2.5Y 4/1), dark grayish brown (10YR 4/2), and dark yellowish brown (10YR 4/4), nonplastic to medium plasticity fines, moist, estimated 20-30% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 3 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, iron oxide staining, zones of weak cementation, fractured clasts from sonic drilling.			Driller attempted a 20-foot run; could on penetrate 15 feet.	y
170 -	S17B					S- 17B (171.00-178.70) GRAVEL with some sand and silt, with cobbles and possible boulders, GP-GM; dark gray (2.5Y 4/1), dark grayish brown (10YR 4/2), and dark yellowish brown (10YR 4/4), nonplastic fines, moist to wet, estimated 20-30% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 3 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, iron oxide	171.00 - 209.00 GRAVEL with some sand and some silt, with cobbles and possible boulders to Sandy GRAVEL with some silt, with			
175 -						Staining, fractured clasts from sonic drilling.	some slit, with cobbles and possible boulders, GP-GM; dark gray (2.5Y 4/1), dark grayish brown (10YR 4/2), and dark yellowish brown (10YR 4/4), nonplastic fines, moist to wet, estimated 20-40% by volume R4-R5 subrounded basalt cobbles with maximum recovered			
180 -	S18	100				S-18 (178.70-193.90) GRAVEL with some sand and silt to Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; dark gray (2.5Y 4/1), dark grayish brown (10YR 4/2), and dark yellowish brown (10YR 4/4), nonplastic fines, moist to wet, estimated 25-35% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 4 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, iron oxide staining, fractured clasts from sonic drilling.	clast dimension of 4 inches, fine to coarse subrounded to well rounded gravel, fine to coarse sand, micaceous, iron oxide staining, fractured clasts from sonic drilling.		S18: 64% gravel, 30' sand, 6% fines.	%
185 -										

Projec	t Name	Intersta	ate Bridge	e Replac	ement P	rogram Hole No. IBR-01	I I		Page 8	of	8
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance lioS	Discontinuity Data 2 Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description	Graphic Log	Drilling Methods, Size and Remarks	Water Level/ Date	Backfill/ Instrumentation
- 195 -	S19	100				S- 19 (193.90-209.00) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; dark gray (2.57 4/1), dark grayish brown (10VR 4/2), and dark yellowish brown (10VR 4/4), nonplastic fines, moist to wet, estimated 30-40% by volume R4-R5 subrounded basalt cobbles with maximum recovered clast dimension of 3 inches, fine to coarse subangular to well rounded gravel, fine to coarse sand, micaceous, iron oxide staining, fractured clasts from sonic drilling.					
- 200 -				•							
- 210 -							209.00 End of hole.				
219											



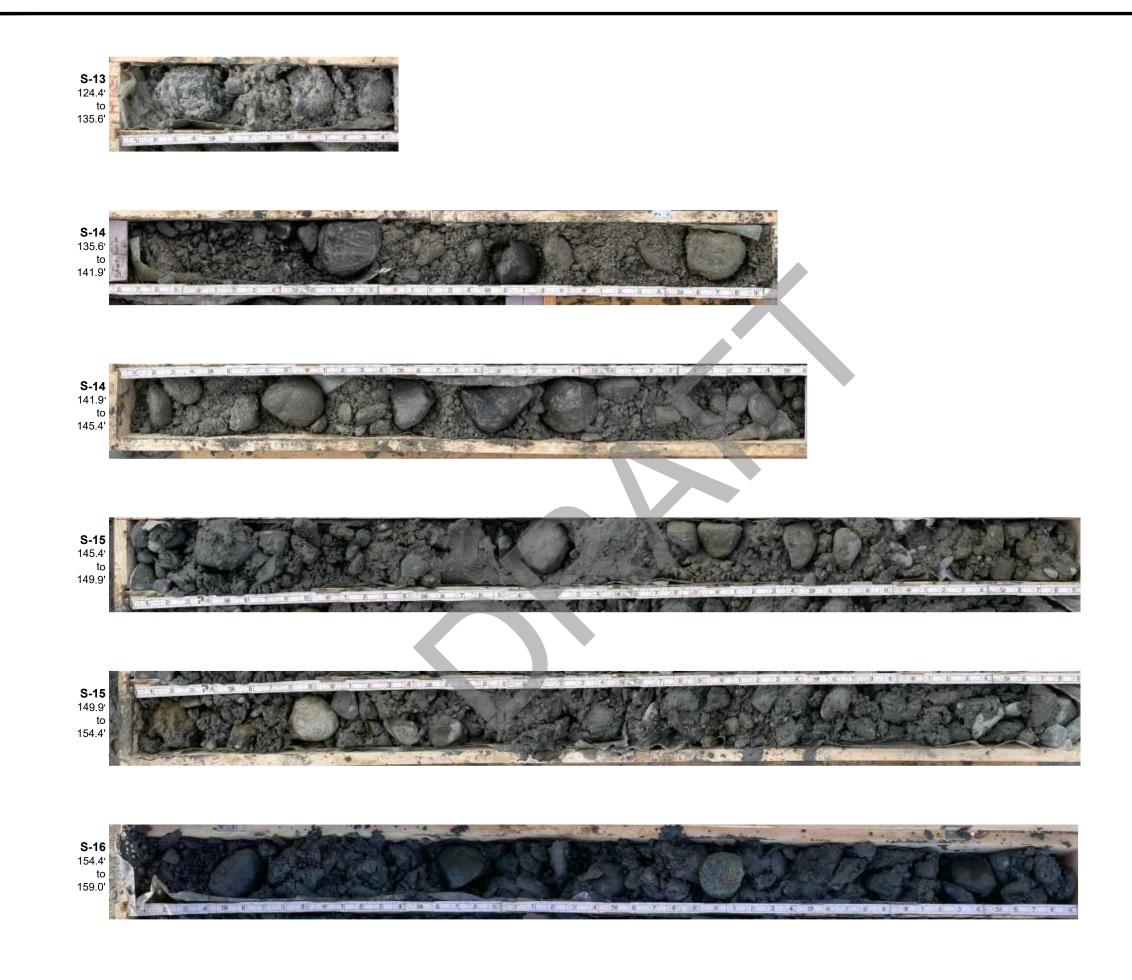
May 2024

105511

EUJ SHANNON & WILSON

Sheet 1 of 5

May 2024


Sheet 2 of 5

105511

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

BORING IBR-01

CORE PHOTOGRAPHS

EIII SHANNON & WILSON

May 2024

Sheet 3 of 5

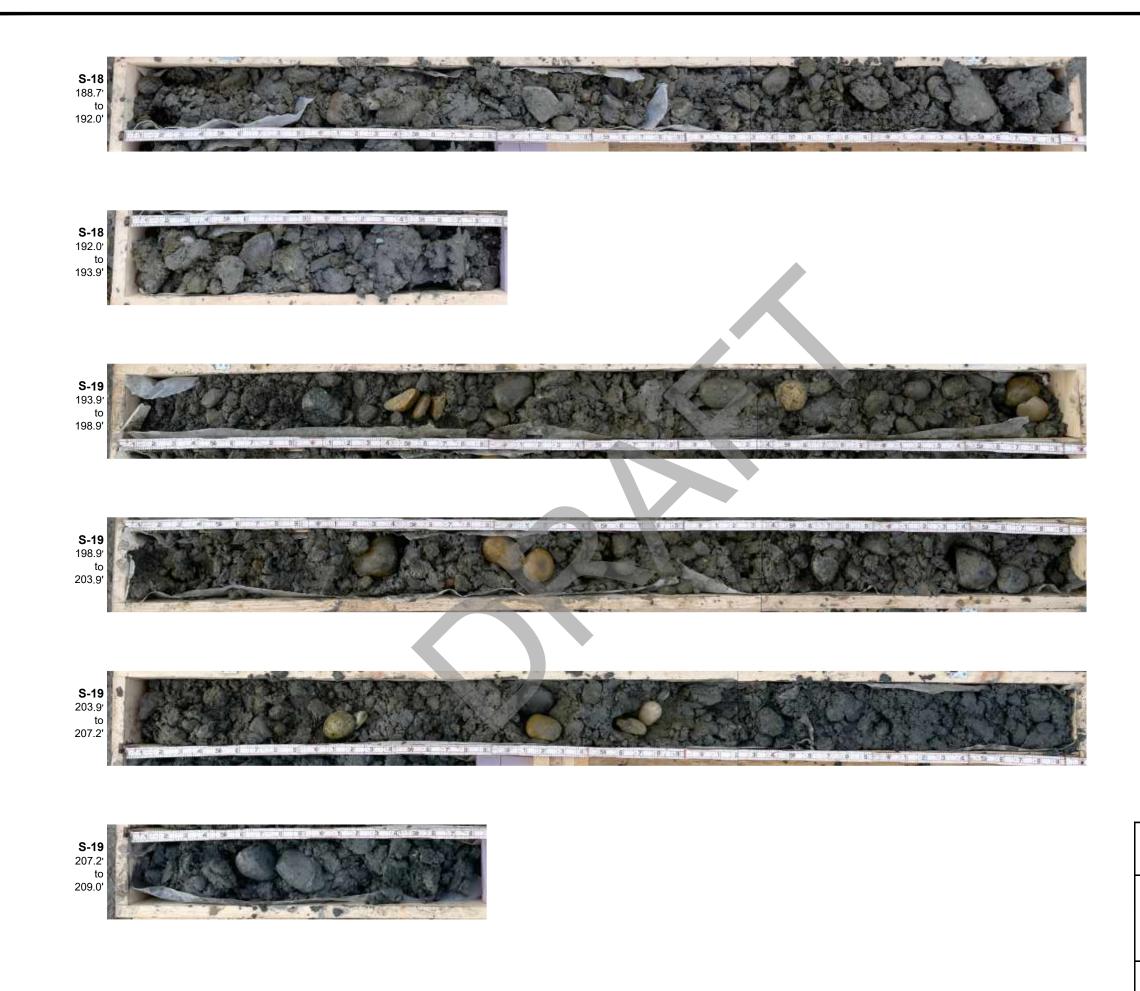
105511

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

BORING IBR-01

CORE PHOTOGRAPHS

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington


BORING IBR-01

CORE PHOTOGRAPHS

Sheet 4 of 5

105511

EIIISHANNON & WILSON

Interstate Bridge Replacement Program Portland, Oregon / Vancouver, Washington

BORING IBR-01 CORE PHOTOGRAPHS

May 2024

105511

EIII SHANNON & WILSON

Sheet 5 of 5

DRILL LOG OREGON DEPARTMENT OF TRANSPORTATION

					ILL LOG		ION		D		c .
				OREGON DEPARTMI	ENT OF TRANSPO	JRIAI	ION	11	Pa ole No.	0	of 9
Draiaat Int	rototo Pri	dge Replacem	ont Broard		Durnaga Bridge	e Struct			.A. No.	IBR-02 N/A	
5		uge Replacem	ent Progra				ure			N/A	
Highway 0				Easting 4	5	oman			ey No.		
Hole Locatio		orthing: 107,92		Easting: 1,		.		-	tart Card No.		
				Hammer Efficiency=89.4%)			es/Aaron & Wyatt		ridge No.	N/A	
2	0	onica Biesiada			Recorder Conno		ora		round Elev.	-10.2 ft.	
Start Date "A" - Auger "X" - Auger "C" - Core, F "N" - Standa "D&M" - Da "U" - Undist	Test T Core arrel Type d Penetration mes & Moo	ype "GP" - GeoPro "T" - Test Pit m re	be [®] <u>Disco</u> J - Jo F - Fa B - B	ult C - Curved edding U - Undulating Foliation St - Stepped	Total Depth 225 <u>Surface Roughness</u> P - Polished SI - Slickensided Sm - Smooth R - Rough VR - Very Rough	5.80 ft	Typic Drilling Methods WL - Wire Line HS - Hollow Stem Aug DF - Drill Fluid SA - Solid Auger CA - Casing Advancer HA - Hand Auger	al Dri	LW - WR - WC - DP - DR -	N/A ations ing Remarks Lost Water Water Return Water Color Down Pressure Drill Rate Drill Action	
Depth (ft) Test Type, No.	Percent Recovery	Driving Resistance Discontinuity Data	2	Material Descrip SOIL: Soil Name, USCS, Color, I Moisture, Consistency/F Texture, Cementation, S ROCK: Rock Name, Color, Weat Discontinuity Spacing, S Core Recovery, Formati	Plasticity, Relative Density, Structure, Origin. hering, Strength, Joint Filling,	Ŭ	nit Description	Graphic Log	Drilling Methods, Size and Remarks	Water Level/ Date	Backfill/
0 - 5 -						Silty grayi 4/2), wet, medi mica	- 12.00 SAND, SM; dark sh brown (2.5Y nonplastic fines, loose, fine to um sand, ceous, sional plastic s.		Borehole dr barge using drilling techi (5.5-inch ho Suspension performed b	mud rotary nique le). logging	
N1	47	2-3-2	30	N-1 (10.50-12.00) Silty SAND with t dark grayish brown (2.5Y 4/2), nonpla loose, fine rounded gravel, fine to me micaceous, occasional plastic debris	astic fines, wet, edium sand,				N1: 1% grav sand, 13% f	vel, 86% îines.	
N2	73	4-5-4	30	N-2 (12.70-14.20) Silty SAND, SM; (2.5Y 4/2), nonplastic fines, wet, loos sand, micaceous.		Silty grave grayi 4/2), wet,) - 14.70 SAND with trace el, SM; dark sh brown (2.5Y nonplastic fines, loose, fine ded gravel, fine				
15 - N3	33	1-2-3	35	N- 3 (15.20-16.70) SAND with trace dark grayish brown (2.5Y 4/2), wet, lo gravel, fine to coarse sand, micaceou	oose, fine rounded	to co mica 14.70 SANI and g	arse sand, ceous.) - 19.20 D with trace silt gravel, SP; dark				
N4	60	1-2-3	39	N- 4 (17.20-18.70) SAND with trace dark gravish brown (2.5Y 4/2), wet, k		4/2),	sh brown (2.5Y wet, loose, fine ded gravel, fine		N4: 3% grav sand, 4% fir		

Project	t Name	Intersta	ate Bridge Replace	ement P	rogram Hole No. IBR-02		Page 2	of 9
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance Discontinuity Data Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description	Drilling Methods, Size and Remarks	Date Devel/
19 20 -	N5	53	5-5-5	40	N- 5 (19.70-21.20) SAND with trace silt, SP; dark grayish brown (2.5Y 4/2), wet, loose to medium dense, fine to medium sand, micaceous.	19.20 - 43.00 SAND with trace silt, SP; dark grayish brown (2.5Y 4/2), wet, loose to medium dense, fine to medium sand, micaceous.		
25 -	N6	53	2-5-5	33	N- 6 (23.30-24.80) SAND with trace silt, SP; dark grayish brown (2.57 4/2), wet, loose to medium dense, fine to medium sand, micaceous.		N6: 97% sand, 3% fin	ies.
30 -	N7	40	3-3-3	36	N- 7 (28.10-29.60) SAND with trace silt, SP; dark grayish brown (2.5Y 4/2), wet, loose, fine to medium sand, micaceous.			
	N8	60	5-6-6	32	N-8 (32.90-34.40) SAND with trace silt, SP; dark gravish			
35 -					brown (2.5Y 4/2), wet, medium dense, fine to medium sand, micaceous.			
	N9	73	6-9-9	31	N- 9 (37.70-39.20) SAND with trace silt, SP; dark grayish brown (2.5Y 4/2), wet, medium dense, fine to medium			
40 -					sand, micaceous.		Driller noted borehole instability from 40 to 1	140
						43.00 - 50.00	feet. Redrilled multipl times.	
45 -						SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine to medium sand,		
48	N10	67	7-8-7	31	N- 10 (45.90-47.40) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine to medium sand, micaceous.	micaceous.	N10: 95% sand, 5% fines.	

Projec	et Name	Intersta	ate Bridge Replace	ement P	rogram Hole No. IBR-02	1 1	Page 3	of 9
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance Discontinuity Data Noo Or RQD%	Percent Natural Moisture	Material Description SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description	Drilling Methods, Size and Remarks Water Level/	Date Backfill/ Instrumentation
48 - 50 ·	N11 U1 N12	33 100 47	1-2-1	35	N- 11 (52.40-53.90) SAND with trace silt and trace gravel, SP; dark grayish brown (2.5Y 4/2), wet, very loose, fine rounded gravel, fine to coarse sand, micaceous. U- 1 (54.30-56.30) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, fine to medium sand, stratified with SILT with sand, ML, micaceous. N- 12 (56.30-57.80) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium	50.00 - 54.00 SAND with trace to some silt and trace gravel, SP/SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, very loose, fine rounded gravel, fine to coarse sand, stratified with SILT with sand, ML, micaceous. 54.00 - 93.00 SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine	N11: 1% gravel, 95% sand, 4% fines.	
- 60 -	N13	73	9-13-15	31	grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine to medium sand, micaceous. N- 13 (61.20-62.70) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine sand, micaceous.	medium dense, fine to medium sand, micaceous.	Borehole sloughing from 60 to 105 feet. N13: 94% sand, 6% fines.	
01.6FJ 000_MAN.GUI 3/31/24	N14	33	10-11-11 10-12-14	33 33	N- 14 (66.20-67.70) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine to medium sand, micaceous.		N15: 94% sand, 6%	
- 70 - 70 - 70 - 70 - 70 - 70 - 70 - 70					grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine to medium sand, micaceous.		fines.	

Projec	t Name	Intersta	ate Bridge Replace	ement P	rogram Hole No. IBR-02		Page 4	of 9
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance Discontinuity Data Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description	Drilling Methods, Size and Remarks	Water Level/ Date Backfill/ Instrumentation
- 80 -	N16	53	14-13-14	31	N- 16 (76.10-77.60) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine to medium sand, micaceous.			
80	N17	53	10-12-17	33	N- 17 (80.70-82.20) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine to medium sand, micaceous.			
- 85 -	N18	40	10-11-12	35	N- 18 (85.70-87.20) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine to medium sand, micaceous.			
- 90 -	N19	60	15-14-12	31	N- 19 (90.10-91.60) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, medium dense, fine to medium sand, micaceous.		N19: 92% sand, 8% fines.	6 4 4 4 4 4 4 4 4 4 4 4 4 4
AN.GDT 5/31/24 -	N20	73	13-20-19	32	N- 20 (94.90-96.40) SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, dense, fine to medium sand, micaceous.	93.00 - 109.30 SAND with some silt to SAND with some silt and trace gravel, SP-SM; dark grayish brown (2.5Y 4/2) to olive brown (2.5Y 4/3), nonplastic fines, wet, dense, fine subrounded gravel, fine to coarse sand, micaceous.		
0DOT DRILL LOG 105511_IBR_0DDT.GPJ 0DOT_MAN.GDT 0 -	N21	67	15-20-15	24	N- 21 (99.60-101.10) SAND with some silt and trace gravel, SP-SM; dark grayish brown (2.5Y 4/2), nonplastic fines, wet, dense, fine subrounded gravel, fine to coarse sand, micaceous.		N21: 5% gravel, 85 sand, 10% fines.	% ***** **** **** **** **** ****
105 105								

Project	t Name	Intersta	ate Bridge Replace	ement P	rogram Hole No. IBR-02	1	Page 5	of 9
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance Discontinuity Data W Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description	Drilling Methods, Size Remarks	water Level/ Date Backfill/
105 -	N22	33	14-14-23	34	N- 22 (105.40-106.90) SAND with some silt and trace gravel, SP-SM; dark grayish brown (2.5Y 4/2) to olive brown (2.5Y 4/3), nonplastic fines, wet, dense, fine to coarse sand, micaceous.			
110 -	N23	0	50/1st 0.5"		N- 23 (110.90-110.95) No Recovery.	109.30 - 145.00 Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; very dark gray (2.5Y 3/1) to dark grayish brown (2.5Y 4/2),	Driller noted harder drilling at 109.3 feet. Drill action indicates cobbles and possible boulders from 109.3 t 162 feet.	
115 -						nonplastic fines, wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand.	Lost drilling mud circulation at 113 feet Occasional drilling mu circulation loss from to 140 feet.	ud 🗸
120 -	N24	67	50/1st 3"		N- 24 (121.20-121.50) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; very dark gray (2.5V 3/1) to dark grayish brown (2.5V 4/2), nonplastic fines, wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand,		Borehole sloughing a 121.5 feet.	t
125 -					Dames & Moore sample attempted over same interval with no recovery.			
130 -	N25	100	50/1st 2"		N- 25 (129.90-130.10) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; very dense, limited sample recovery, description based on drill action.		Lost drilling mud circulation and approximately 350 gallons of drilling mud loss from 130 to 140 feet. Driller used another 250 gallons of thick mud to attempt	of

Project	t Name	Intersta	ate Bridge Replace	ement Pr	ogram Hole No. IBR-02	1	Page 6	of 9
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance Discontinuity Data Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description Craphic Craphic	Drilling Methods, Size and Remarks Water Level/	Date Backfill/
133 135 -							regain circulation. Pulled drill rods and redrilled to 140 feet through slough.	
140 -	N26	100	50/1st 1"		N-26 (140.10-140.20) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; very dense, limited sample recovery, description based on drill action, Dames & Moore sample attempted over same interval with no recovery.		Approximately 1200 gallons of drilling mud loss from 140 to 150 feet.	
145 -						145.00 - 162.00 GRAVEL with some sand and trace silt, with cobbles and possible boulders, GP; very dark gray (2.5Y 3/1) to dark		
150 —	D&M1 N27	50 100	100/1st 4" 50/1st 6"		D&M-1 (149.30-149.60) GRAVEL with some sand and trace silt, with cobbles and possible boulders, GP; limited sample recovery, description based on drill action. N-27 (150.00-150.50) GRAVEL with some sand and trace silt, with cobbles and possible boulders, GP; very dark gray (2.5Y 3/1) to dark grayish brown (2.5Y 4/2), wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand, iron oxide staining.	grayish brown (2.5Y 4/2), wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand, iron oxide staining.	Approximately 300 gallons of drilling mud loss from 150 to 160 feet.	
155 -							Driller noted easier drilling from 154 to 155 feet.	
160 -	N28	63	44-50/3"		N- 28 (159.90-160.70) GRAVEL with some sand and trace silt, with cobbles and possible boulders, GP; very dark gray (2.5Y 3/1) to dark grayish brown (2.5Y 4/2), wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand, iron oxide staining.		Approximately 300 gallons of drilling mud	

Projec	t Name	Intersta	ate Bridge Repla	cement P	rogram Hole No. IBR-02		Page 7	of 9
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance Discontinuity Data avo Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.		Graphic Log Drilling Methods, Size and Remarks	Water Level/ Date Backfill/ Instrumentation
- 165 -						162.00 - 185.00 Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; very dark gray (2.5Y 3/1), dark grayish brown (2.5Y 4/2), dark gray (2.5Y 4/1), dark grayish brown (10YR 4/2), and dark yellowish brown (10YR 4/4), nonplastic fines, wet, very dense, fine to coarse, subangular to well	Driller noted smooth drilling from 162 to feet. Drill action indicated intermitter cobbles from 165 to feet.	165
- 170 -	D&M2 N29	50 80	57-58-68 17-32-50		D&M- 2 (169.20-170.70) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GNI; very dark, gray (2.5Y 3/1) to dark grayish brown (2.5Y 4/2), nonplastic fines, wet, fine to coarse subangular to well rounded gravel, fine to coarse sand, iron oxide staining. N- 29 (170.70-172.20) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; very dark gray (2.5Y 3/1) to dark grayish brown (2.5Y 4/2), nonplastic fines, wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand, iron oxide staining.	rounded gravel, fine to coarse sand, iron oxide staining.	Approximately 300 gallons of drilling m loss from 170 to 18 feet. Driller noted smooth drilling from to 187 feet.	
- 175 -	N30	67	45-46-43		N- 30 (177:90-179.40) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; dark gray (2.5Y 4/1), dark grayish brown (10YR 4/2), and dark yellowish brown (10YR 4/4), nonplastic fines, wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand, iron oxide staining.		Approximately 100 gallons of drilling m loss from 180 to 190 feet.	
- 185 -	N31	25	50/1st 5"		N- 31 (187.80-188.20) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; very dense, limited sample recovery, description based on drill action.	185.00 - 205.00 Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; dark grayish brown (2.5Y 4/2) to olive brown (2.5Y 4/3), nonplastic fines, wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand,	Drill action indicates intermittent cobbles 187 to 215 feet.	

Projec	t Name	Intersta	ate Bridge Replac	ement P	Program Hole No. IBR-02		Page 8	of 9
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance Discontinuity Data aou Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description Graphic Unit Description		Water Level/ Date Backfill/ Instrumentation
- 195 -						iron oxide staining.	Approximately 50 gallons of drilling mu loss from 190 to 210 feet.	
- 200 -	N32	54	38-36-50/4"		N- 32 (198.50-199.80) Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM; dark gravish brown (2.5Y 4/2) to olive brown (2.5Y 4/3), nonplastic fines, wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand, iron oxide staining.			
- 205 -	N33	53	50-48-48	15	N- 33 (208.50-210.00) Gravelly SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2) to olive brown (2.5Y 4/3), nonplastic fines, wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse	205.00 - 215.00 Gravelly SAND with some silt, SP-SM; dark grayish brown (2.5Y 4/2) to olive brown (2.5Y 4/3), nonplastic fines, wet, very dense, fine to coarse subangular to well rounded gravel, fine to coarse sand, iron oxide staining.	N33: 42% gravel, 51 sand, 7% fines.	**** **** **** **** **** **** **** **** ****
- 210 -					sand, iron oxide staining.	045.00 005.00	Approximately 300 gallons of drilling mu- loss from 210 to 220 feet. Drill action indicates cobbles and possible boulders fro 215 feet to end of hol	d m
219	N34	50	50/1st 2"		N- 34 (218.10-218.30) Sandy GRAVEL with some silt,	215.00 - 225.80 Sandy GRAVEL with some silt, with cobbles and possible boulders, GP-GM, very dense, limited sample recovery, description based on drill action.		

Project	t Name	Interst	ate Bridg	e Replac	ement P	rogram Hole No. IBR-02		Page 9 o	of 9
Depth (ft)	Test Type, No.	Percent Recovery	Driving Resistance	Discontinuity Data 2 Or RQD%	Percent Natural Moisture	<u>Material Description</u> SOIL: Soil Name, USCS, Color, Plasticity, Moisture, Consistency/Relative Density, Texture, Cementation, Structure, Origin. ROCK: Rock Name, Color, Weathering, Strength, Discontinuity Spacing, Joint Filling, Core Recovery, Formation Name.	Unit Description	Methods, Size and Remarks Water Level/ Date	Backfill/ Instrumentation
219						with cobbles and possible boulders, GP-GM; very dense, limited sample recovery, description based on drill action.			
225 -							225.80 End of hole.	Approximately 130 feet of drill rod sheared off when drilling at 225.8 feet and driller could not retrieve an approximate 1-foot section of rod from the bottom of the borehole. Boring	
230 -								terminated.	
235 -				•					
240 -									
245 -									
247									

APPENDIX C. BOREHOLE SUSPENSION LOGGING RESULTS TABLE OF CONTENTS

1. GENERALC	-1
-------------	----

ATTACHMENTS

GEOVision Report 24016-01 Global Geophysics Report 114-0108.000

1. GENERAL

GEOVision Geophysical Services (GEOVision) of Corona, California and Global Geophysics of Redmond, Washington performed the downhole geophysical measurements of compression (P) and shear (S) wave velocities using a method known as OYO P-S Suspension Logging. The logging was conducted while the borings were open prior to backfill and the data collected can be used to generate a profile showing wave velocities with depth. Measurements were taken at approximately 1.6-foot depth intervals using a down-hole probe that contains a wave source and two geophones. A description of the testing procedures and the geophysical logs are located at the end of this appendix in the reports provided by GEOVision and Global Geophysics. GEOVision performed suspension logging in borings IBR-02, IBR-03, and IBR-05. Global Geophysics performed suspension logging in boring IBR-07.

BOREHOLE GEOPHYSICS PORT INTERSTATE BRIDGE REPLACEMENT VANCOUVER, WASHINGTON

Prepared for

Shannon & Wilson, Inc. 3990 Collins Way, Suite 100 Lake Oswego, Oregon 97035 (503) 210 - 4784

Prepared by

GEOVision Geophysical Services

1124 Olympic Drive Corona, California 92881 (951) 549 - 1234

March 12, 2024

Report 24016-01 Rev 0

TABLE OF CONTENTS

TABLE OF CONTENTS	2
TABLE OF FIGURES	3
TABLE OF TABLES	3
INTRODUCTION	4
SCOPE OF WORK	4
INSTRUMENTATION	
SUSPENSION VELOCITY	
MEASUREMENT PROCEDURES	8
SUSPENSION VELOCITY	8
SUSPENSION VELOCITY	9
SUSPENSION VELOCITY	9
RESULTS	11
SUSPENSION VELOCITY	
DISCUSSION OF RESULTS	
SUSPENSION VELOCITY	12
QUALITY ASSURANCE	13
SUSPENSION VELOCITY DATA RELIABILITY	13
CERTIFICATION	14
FIGURES	15
TABLES	22
APPENDIX A SUSPENSION VELOCITY MEASUREMENT SOURCE TO	RECEIVER
ANALYSIS RESULTS	36

APPENDIX B	BORING GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABL	.E
CALIBRATIO	IN RECORDS	51

Table of Figures

Figure 1: Concept illustration of P-S logging system	16
Figure 2: Example of filtered (1400 Hz lowpass) suspension record	17
Figure 3. Example of unfiltered suspension record	18
Figure 4: Borehole IBR-02, Suspension R1-R2 P- and S _H -wave velocities	19
Figure 5: Borehole IBR-03, Suspension R1-R2 P- and SH-wave velocities	20
Figure 6: Borehole IBR-05, Suspension R1-R2 P- and S _H -wave velocities	21

Table of Tables

Table 1. Borehole Logging Dates and Locations	23
Table 2. Logging Tools, Depth Ranges and Sample Intervals	23
Table 3. Borehole IBR-02, Suspension -R2 depths and P- and S _H -wave velocities	24
Table 4. Borehole IBR-03, Suspension R1-R2 depths and P- and S _H -wave velocities	27
Table 5. Borehole IBR-05, Suspension R1-R2 depths and P- and S _H -wave velocities	31
Table 6. Summary of PS Suspension Data Quality Evaluation Using Five Criteria	35

INTRODUCTION

GEO*Vision* acquired PS Suspension velocity data in three boreholes at the I-5 bridge replacement project in Vancouver, Washington. A GEOVision Professional Engineer reviewed fieldwork, data analysis, and report preparation. A summary of the instrumentation, methods, data analysis, and final results follows.

SCOPE OF WORK

This report presents the results of PS Suspension velocity data acquired in three boreholes as detailed in Table 1. The purpose of these measurements was to supplement stratigraphic information by acquiring shear wave and compressional wave velocities as a function of depth.

The OYO PS Suspension Logging System was used to obtain in-situ horizontal shear (S_H), and compressional (P) wave velocity measurements in three uncased boreholes at 1.6-foot intervals. Measurements followed **GEO***Vision* Procedure for PS Suspension Seismic Velocity Logging, revision 1.5. Acquired data were analyzed, and a profile of velocity versus depth was produced for both S_H and P waves.

A detailed reference for the PS Suspension velocity measurement techniques used in this study is: <u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

Data were processed and compiled to generate profiles of the preceding parameters versus depth.

INSTRUMENTATION

Suspension Velocity

Suspension velocity measurements were performed using the suspension PS logging system, manufactured by OYO Corporation, and their subsidiary, Robertson Geo (RG). This system directly determines the average velocity of a 3.3-foot-high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shearwave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.3 feet, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in this survey is approximately 22 feet, with the center point of the receiver pair 12.5 feet above the bottom end of the probe.

The probe receives control signals from, and sends the digitized receiver signals to, instrumentation on the surface via an armored conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data using a sheave of known circumference fitted with a digital rotary encoder.

The entire probe is suspended in the borehole by the cable; therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and S_H-waves in the surrounding soil and rock as it passes through the casing and grout annulus (if present) and impinges upon the wall of the boring. These waves propagate through the soil and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and S_H-waves at the receivers is performed using the following steps:

- 1. Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H-wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_H-wave signature distinct from the P-wave signal.
- 3. The 6.3-foot separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver.
- In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe (feet versus inches scale), preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again, and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The Suspension PS system has six channels (two simultaneous recording channels), each with a 1024 sample record. The recorded data are displayed as six channels with a common time scale. Data are stored on disk for further processing.

Review of the displayed data on the recorder or computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), and sample rate to optimize the quality of the data before recording.

Verification of the calibration of the Suspension P-S digital recorder is performed at least every twelve months using a NIST traceable frequency source and counter and **GEO***Vision* Suspension P-S Seismic Logger/Recorder Calibration Procedure Revision 2.1. Calibration records are reproduced in Appendix B.

MEASUREMENT PROCEDURES

Suspension Velocity

Three boreholes were logged with the PS Suspension tool. Measurements followed the **GEO***Vision* Procedure for PS Suspension Seismic Velocity Logging, revision 1.5. Prior to logging, the probe was positioned with the top of the probe even with a stationary reference point. The electronic depth counter was set to the distance between the mid-point of the receiver and the top of the probe, minus the height of the stationary reference point, if any, verified with a tape measure, and recorded on the field logs. The probe was lowered to the bottom of the borings, stopping at 1.6-foot intervals to collect data, as summarized in Table 2.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth were viewed on the computer display, checked, and recorded to disk before moving to the next depth.

Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the boring.

DATA ANALYSIS

Suspension Velocity

Using the proprietary OYO program PSLOG.EXE version 1.0, the recorded digital waveforms were analyzed to locate the most prominent first minima, first maxima, or first break on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.3-foot (1.0 meter) segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data. The time picks were then transferred into a Microsoft Excel[®] template to complete the velocity calculations based on the arrival time picks made in PSLOG. The Microsoft Excel[®] analysis files were previously delivered. Due to the longevity of this project, results were delivered at intervals as requested.

The P-wave velocity over the 6.3-foot interval from source to receiver 1 (S-R1) was also picked using PSLOG, and calculated and plotted in Microsoft Excel[®], for a check of the reasonableness of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 4.8 feet to correspond to the mid-point of the 6.3-foot S-R1 interval. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting 0.35 milliseconds, the calculated and experimentally verified delay from source trigger pulse (beginning of record) to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact.

As with the P-wave records, the recorded digital waveforms were analyzed to locate clear S_H -wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_H -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital Fast Fourier Transform – Inverse Fast Fourier Transform (FFT – IFFT) lowpass filtering was used to remove the higher frequency P-wave signal from the S_H -wave signal. Different filter cutoffs were used to separate P- and S_H -waves at different depths, ranging from 600 Hz in the slowest zones to 4000 Hz in the regions of highest velocity. At each depth, the filter frequency was selected to be at least twice the fundamental frequency of the S_H -wave signal being filtered.

Generally, the first maxima were picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

As with the P-wave data, S_H-wave velocity calculated from the travel time over the 6.3-foot interval from source to receiver 1 was plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 4.8 feet to correspond to the mid-point of the 6.3-foot S-R1 interval. Travel times were obtained by picking the first break of the S_H-wave signal at the near receiver and subtracting 0.35 milliseconds, the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact.

Figure 2 shows an example of R1 - R2 measurements on a sample filtered suspension record. In Figure 2, the time difference over the 3.3-foot interval of 1.88 milliseconds for the horizontal signals is equivalent to an S_H -wave velocity of 1745 feet/second. Whenever possible, time differences were determined from several phase points on the S_H -waveform records to verify the data obtained from the first arrival of the S_H -wave pulse. Figure 3 displays the same record before filtering of the S_H -waveform record with a 1400 Hz FFT - IFFT digital lowpass filter, illustrating the presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H -wave by residual P-wave signal.

RESULTS

Suspension Velocity

Suspension R1-R2 P- and S_{H} -wave velocities for boreholes IBR-02, IBR-03 and IBR-05 are plotted in Figures 4 through 6; data are compiled in Tables 3 through 5 respectively. The associated Microsoft Excel[®] analysis files accompany this report. Included in the analysis files are Poisson's Ratio calculations, tabulated data, and plots.

P- and S_H-wave velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Figures A-1 through A-3 in Appendix A to aid in visual comparison. Note that R1-R2 data are an average velocity over a 3.3-foot segment of the soil column; S-R1 data are an average over 6.3 feet, creating a significant smoothing relative to the R1-R2 plots. The S-R1 velocity data displayed in these figures are also presented in Tables A-1 through A-3, respectively.

DISCUSSION OF RESULTS

Suspension Velocity

Suspension PS velocity data are ideally collected in uncased fluid filled boreholes, as was the case for these boreholes.

Suspension PS velocity data quality is judged based upon 5 criteria.

- Consistent data between receiver to receiver (R1 R2) and source to receiver (S R1) data.
- Consistency between data from adjacent depth intervals.
- Consistent relationship between P-wave and S_H -wave (excluding transition to saturated soils)
- Clarity of P-wave and S_H -wave onset, as well as damping of later oscillations.
- Consistency of profile between adjacent borings, if available.

Table 6 summarizes the evaluation of the borehole datasets with respect to these criteria. These data indicate good consistency between R1-R2 and S-R1 velocities, and consistency between adjacent depths.

To improve reliability and minimize uncertainty, whenever possible, travel time differences were determined from several arrivals on the S_H-waveform records to verify the data obtained from the first arrival of the S_H-wave pulse. In addition, velocities from travel times from S-R1 were also determined and used to verify the velocities derived from the travel times between receivers R1-R2.

Quality Assurance

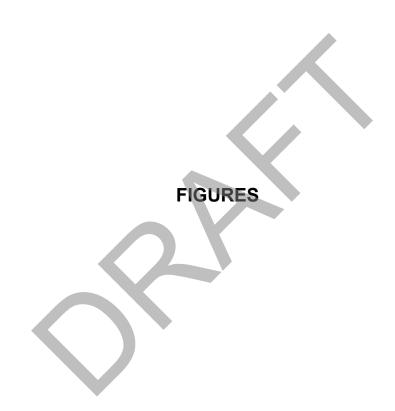
These borehole geophysical measurements were performed using industry-standard or better methods for measurements and analyses. All work was performed under GEOVision quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs
- Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist.

Suspension Velocity Data Reliability

P- and S_{H} -wave velocity measurement using the Suspension Method gives average velocities over a 3.3-foot interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are very reliable, with an estimated accuracy of +/- 5%. Depth indications are very reliable with an estimated accuracy of +/- 0.2 feet. Standardized field procedures and quality assurance checks contribute to the reliability of these data.

CERTIFICATION


All geophysical data, analysis, interpretations, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by a **GEO***Vision* California Professional Geophysicist.

Prepared by

3/12/2024 Robert Steller Date Senior Geophysicist **GEO**Vision Geophysical Services Reviewed and approved by DIA G. No. 30362 3/12/2024 John Diehl Date California Professional Engineer, P.E. 30362 **GEO***Vision* Geophysical Services

* This geophysical investigation was conducted under the supervision of a California Professional Geophysicist or Engineer using industry standard methods and equipment. A high degree of professionalism was maintained during all aspects of the project from the field investigation and data acquisition, through data processing, interpretation and reporting. All original field data files, field notes and observations, and other pertinent information are maintained in the project files and are available for the client to review for a period of at least one year.

A professional geophysicist's certification of interpreted geophysical conditions comprises a declaration of his/her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations or ordinances.

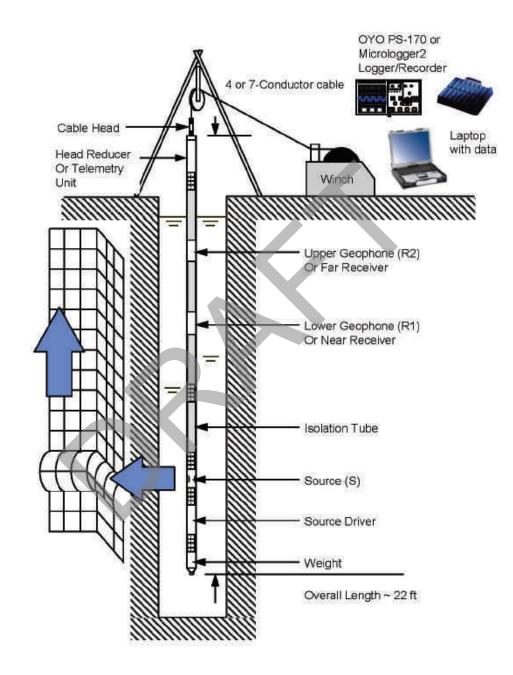


Figure 1: Concept illustration of P-S logging system

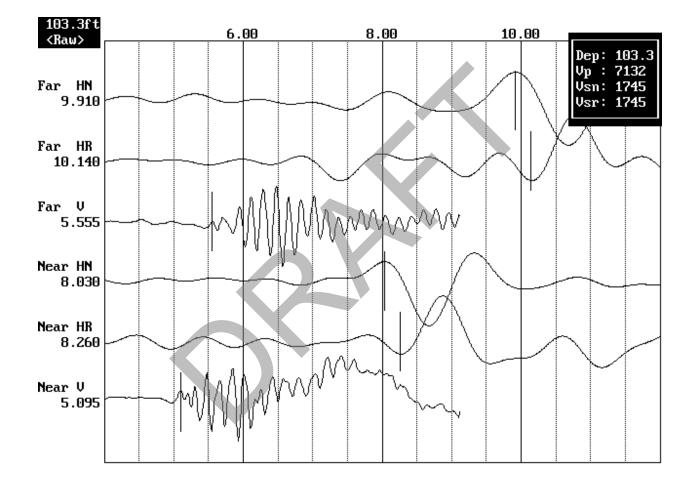


Figure 2: Example of filtered (1400 Hz lowpass) suspension record

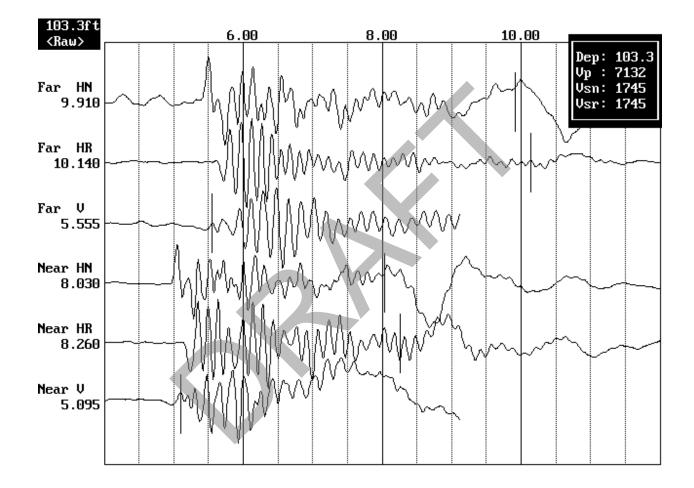


Figure 3. Example of unfiltered suspension record

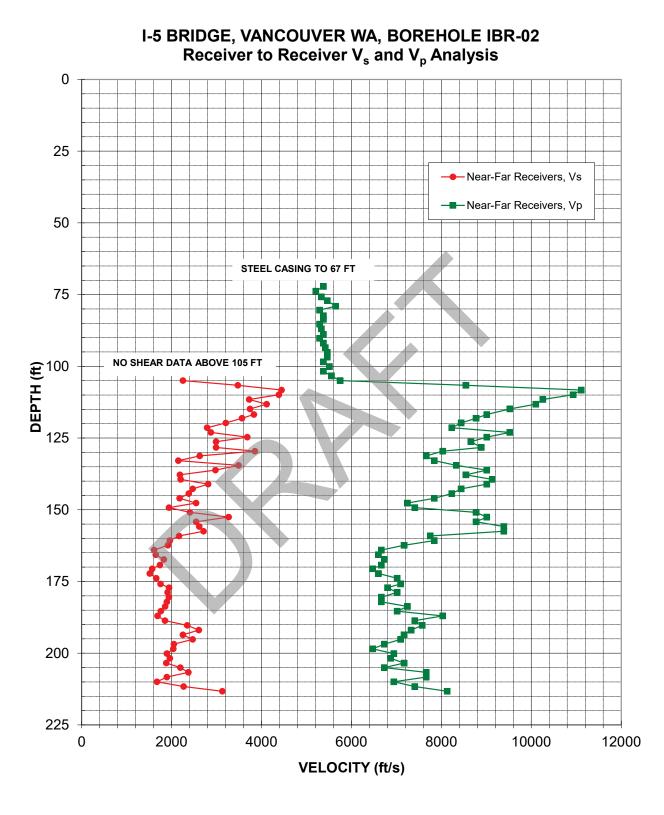


Figure 4: Borehole IBR-02, Suspension R1-R2 P- and SH-wave velocities

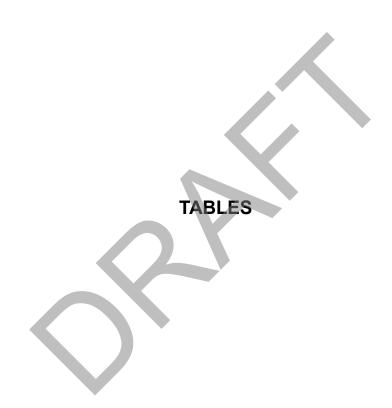



Figure 5: Borehole IBR-03, Suspension R1-R2 P- and SH-wave velocities

Figure 6: Borehole IBR-05, Suspension R1-R2 P- and S_H-wave velocities

BOREHOLE	DATE(S)		COORDINATES ⁽¹⁾	
NUMBER	LOGGED	NORTHING	EASTING	ELEVATION (FEET)
IBR-02	1/25/2024	107927.501	1082095.207	NA
IBR-03	2/2/2024	110582.302	1083176.112	NA
IBR-05	2/23/2024	111405.141	1083544.515	NA

Table 1. Borehole Logging Dates and Locations

⁽¹⁾ Coordinates in project coordinate system, provided by client

⁽²⁾ To convert to NAD83, multiply by a scale factor of 1.0000576.

Table 2. Logging Tools, Depth Ranges and Sample Intervals

BOREHOLE NUMBER	TOOL AND RUN NUMBER	DEPTH RANGE (FEET)	SAMPLE INTERVAL (FEET)	DATE(S) LOGGED
IBR-02	SUSPENSION DOWN 01	67.26 - 213.26	1.64	1/25/2024
IBR-03	SUSPENSION DOWN 01	45.93 – 282.15	1.64	2/2/2024
IBR-05	SUSPENSION DOWN 01	39.37 – 244.42	1.64	2/23/2024

Table 3. Borehole IBR-02, Suspension R1-R2 depths and P- and S_H-wave velocities

A	American Units] [Metric Units				
Depth at Midpoint Between	Velo	ocity	Poisson's		Depth at Midpoint Between	Velo	ocity	Poisson's	
Receivers	Vs	Vp	Ratio		Receivers	Vs	Vp	Ratio	
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)		
72.2	-	5380	-		22.0	-	1640	-	
73.8	-	5210	-		22.5	-	1590	-	
75.8	-	5330	-		23.1	-	1630	-	
77.1	-	5460	-		23.5	-	1670	-	
79.1	-	5650	-		24.1	-	1720	-	
80.4	-	5290	-		24.5	-	1610	-	
82.4	-	5380	-		25.1	-	1640	-	
83.7	-	5380	-		25.5	-	1640	-	
85.3	-	5290	-		26.0	-	1610	-	
86.9	-	5330	-		26.5	-	1630	-	
88.9	-	5380	-		27.1	-	1640	-	
90.2	-	5290	-		27.5	-	1610	-	
91.9	-	5380	-		28.0	-	1640	-	
93.5	-	5420	-		28.5	-	1650	-	
95.1	-	5460			29.0	-	1670	-	
96.8	-	5460	-		29.5	-	1670	-	
98.4	-	5380			30.0	-	1640	-	
100.1	-	5510	-		30.5	-	1680	-	
101.7	-	5380	-		31.0	-	1640	-	
103.4	-	5560			31.5	-	1690	-	
105.0	2250	5750	0.41		32.0	690	1750	0.41	
106.6	3470	8550	0.40		32.5	1060	2610	0.40	
108.3	4440	11110	0.40		33.0	1350	3390	0.40	
109.9	4390	10930	0.40		33.5	1340	3330	0.40	
111.6	3720	10260	0.42		34.0	1140	3130	0.42	
113.2	4120	10100	0.40		34.5	1250	3080	0.40	
114.8	3750	9520	0.41		35.0	1140	2900	0.41	
116.8	3830	9010	0.39		35.6	1170	2750	0.39	
118.1	3570	8770	0.40		36.0	1090	2670	0.40	
119.8	3210	8440	0.42		36.5	980	2570	0.42	
121.4	2790	8230	0.44		37.0	850	2510	0.44	
123.0	2870	9520	0.45		37.5	880	2900	0.45	
124.7	3680	9010	0.40		38.0	1120	2750	0.40	
126.3	2990	8660	0.43		38.5	910	2640	0.43	
128.3	2990	8890	0.44		39.1	910	2710	0.44	
129.6	3850	8030	0.35		39.5	1170	2450	0.35	
131.2	2620	7660	0.43		40.0	800	2340	0.43	
132.9	2150	7840	0.46		40.5	660	2390	0.46	

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole IBR-2

Depth at Midpoint Between ReceiversVelocity V_s Poisson's RatioReceiversV_sV_b (ft's)Poisson's RatioPoisson's ReceiversPoisson's Receivers (ft) (ft's)(ft's)(ft's)(ft's)Poisson's Ratio134.5349083300.3941.0106025400.39135.2298090100.44137.891027500.44137.8219085500.4742.067027600.47141.1281090100.4543.575025700.45142.7247084400.4643.575025700.45144.4238082300.4543.575025700.45144.4238082300.4544.073025100.45144.6218078400.4645.559022600.43150.9241087700.4645.559022600.46152.6327090100.4247.078026700.45155.8261093900.4647.580028600.46157.5271093900.4647.580023600.47165.7165066000.4750.550020100.47165.7165066000.4750.550020100.47165.7165066000.4751.0 </th <th colspan="3">American Units</th> <th colspan="5">Metric Units</th>	American Units			Metric Units					
Midpoint Between Receivers V_s V_p Poisson's RatioMidpoint ReceiversMidpoint V_s V_p V_s Poisson's Ratio(ft)(ft's)(ft's)(ft's)(ft's)(ft's) V_s V_p Poisson's Ratio134.5349083300.3941.0106025400.39136.2298090100.4441.591027500.44137.8219085500.4742.567027600.47141.1281090100.4543.086027500.45144.4280082300.4544.073025100.45144.4280072600.4345.555022600.46147.6254072500.4245.555022600.46152.6327090100.4245.5100027500.42154.2254077500.4648.566023800.46155.8261093900.4648.083028600.47155.1216077500.4247.078026700.44165.7165066000.4750.650020100.47165.7165066000.4750.550020100.47165.7165066000.4750.550020100.47177.9175070900.4753.6530	Depth at	Velo	ocity			Depth at	Velocity		
Receivers V_s V_p RatioReceivers V_s V_p Ratio(ft)(ft/s)(ft/s)(ft/s)(ft/s)(ft/s)(ft/s)(ft/s)(ft/s)136.2298090100.44(ft/s)(ft/s)0.390.39136.2298090100.4441.591027500.44137.8219085500.4742.567027800.47139.4220091300.4543.086027500.45144.4238082300.4543.086027500.45144.4238082300.4644.566023900.46147.6254072500.4344.566023900.46150.9241087700.4646.5100027500.42152.6327090100.4247.078026700.45155.1271093900.4547.580028600.46160.8196078400.4749.060023900.47165.7165066000.4750.550020100.47165.7165066000.4753.653020300.46160.8196070200.4753.653020300.46165.7165066000.4753.653020100.47165.7165066000.4753.6	Midpoint					Midpoint			
(ft)(ft/s)(ft/s)(m)(m/s)(m/s)134.5349083300.39136.2298090100.44137.8219085500.4741.591027500.44138.4220091300.4742.567026100.47141.1281090100.4543.575025700.45144.4238082300.4543.575025700.45144.4238078400.4644.566023900.46147.625407700.4645.559022600.46150.9241087700.4645.559022600.46152.6327090100.4247.078026700.46155.8261093900.4647.580028600.46155.8261093900.4648.566023800.46156.7165066000.4750.550020100.47166.8196078400.4751.056020300.47167.3183067300.4651.653021600.47177.2194068000.4651.653021600.47177.2194068000.4651.653021600.47177.2194068000.4655.558021400.46183.71									
134.5 3490 8330 0.39 41.0 1060 2540 0.39 136.2 2980 9010 0.44 41.5 910 2750 0.44 137.8 2190 8550 0.47 42.0 670 2610 0.47 139.4 2200 9130 0.47 42.0 670 2780 0.47 141.1 2810 9010 0.45 43.5 750 2570 0.45 144.7 2380 8230 0.45 43.5 750 2570 0.45 144.6 2180 7840 0.46 44.5 660 2390 0.46 147.6 2540 7250 0.43 45.5 590 2260 0.46 150.9 2410 8770 0.46 45.5 1000 2750 0.42 154.2 2540 8770 0.46 46.5 1000 2750 0.42 155.8 2610 9390 0.46 47.5 800 2860 0.46 157.5 2710 9390 0.46 48.5 660 2390 0.47 162.4 1920 7170 0.46 48.5 660 2300 0.47 165.7 1650 6000 0.47 50.5 500 2010 0.47 166.7 1670 0.47 52.5 460 2010 0.47 172.2 1520 6600 0.47 52.5 460 2010				Ratio					Ratio
136.2 2980 9010 0.44 41.5 910 2750 0.44 137.8 2190 8550 0.47 42.0 670 2610 0.47 139.4 2200 9130 0.47 42.5 670 2780 0.47 141.1 2810 9010 0.45 43.0 860 2750 0.45 144.4 2380 8230 0.45 44.0 730 2510 0.45 144.4 2380 8230 0.45 44.0 730 2510 0.45 144.4 2380 8230 0.46 44.5 660 2390 0.46 147.6 2540 7250 0.43 45.5 590 2210 0.43 149.3 1940 7410 0.46 45.5 590 2260 0.46 150.6 3270 010 0.42 47.0 780 2670 0.45 155.8 2610 9390 0.46 47.5 800 2860 0.46 157.5 2710 9390 0.46 47.5 800 2860 0.47 160.8 1960 7840 0.47 49.5 580 2180 0.47 165.7 1650 6600 0.47 51.6 530 2030 0.47 165.7 1650 6600 0.47 52.5 460 2010 0.47 177.2 1920 6670 0.46 51.6 530 2160		· · /	· · /				· · ·	· · · ·	
137.8 2190 8550 0.47 42.0 670 2610 0.47 139.4 2200 9130 0.47 42.5 670 2780 0.47 141.1 2810 9010 0.45 43.0 860 2750 0.45 142.7 2470 8440 0.45 43.5 750 2570 0.45 144.4 2380 8230 0.45 44.0 730 2510 0.45 144.6 2180 7840 0.46 44.5 660 2390 0.46 147.6 2540 8770 0.46 45.5 590 2260 0.46 152.6 3270 9010 0.42 47.0 780 2670 0.45 155.8 2610 9390 0.46 47.5 800 2860 0.46 155.8 2610 9390 0.46 48.5 660 2380 0.46 150.1 2160 7750 0.46 48.5 660 2380 0.46 160.8 1960 7840 0.47 55.5 500 2100 0.47 165.7 1650 6600 0.47 55.5 500 2100 0.47 167.3 1830 6730 0.46 51.6 530 2100 0.47 172.2 1520 6600 0.47 55.5 500 2010 0.47 177.2 1940 6800 0.46 55.5 580 214		1							
139.4 2200 9130 0.47 42.5 670 2780 0.47 141.1 2810 9010 0.45 43.0 860 2750 0.45 142.7 2470 8440 0.45 43.0 860 2750 0.45 144.4 2380 8230 0.45 43.5 750 2570 0.45 146.0 2180 7840 0.46 44.5 660 2390 0.46 147.6 2540 7250 0.43 45.5 590 2260 0.46 150.9 2410 8770 0.46 46.0 730 2670 0.46 152.6 3270 9010 0.42 46.5 1000 2750 0.42 154.2 2540 8770 0.46 46.5 1000 2750 0.46 157.5 2710 9390 0.46 47.5 800 2860 0.46 157.5 2710 9390 0.46 48.5 660 2380 0.46 160.8 1960 7840 0.47 49.5 580 2180 0.46 166.3 1770 6670 0.46 51.6 530 2030 0.47 177.2 1520 6600 0.47 52.5 460 2010 0.47 177.2 1940 6870 0.46 55.5 580 2140 0.47 177.2 1940 6670 0.46 55.5 580 2									
141.1 2810 9010 0.45 43.0 860 2750 0.45 142.7 2470 8440 0.45 43.5 750 2570 0.45 144.4 2380 8230 0.45 43.5 750 2570 0.45 146.0 2180 7840 0.46 45.5 660 2390 0.46 147.6 2540 7250 0.43 45.5 590 2210 0.43 149.3 1940 7410 0.46 45.5 590 2260 0.46 150.9 2410 8770 0.42 46.5 1000 2750 0.42 154.2 2540 8770 0.46 46.5 1000 2360 0.46 155.8 2610 9390 0.46 47.5 800 2860 0.46 155.8 2610 9390 0.46 47.5 800 2360 0.46 155.8 2610 7840 0.47 49.0 600 2390 0.47 162.4 1920 7170 0.46 51.0 590 2030 0.47 165.7 1650 6600 0.47 50.0 490 2030 0.47 167.3 1830 6730 0.46 51.6 530 2030 0.46 169.3 1740 6670 0.46 51.6 530 2010 0.47 177.2 1940 6670 0.46 55.5 580 2									
142.7 2470 8440 0.45 43.5 750 2570 0.45 144.4 2380 8230 0.45 44.0 730 2510 0.45 146.0 2180 7840 0.46 44.5 660 2390 0.46 147.6 2540 7250 0.43 45.5 590 2210 0.43 149.3 1940 7410 0.46 45.5 590 2260 0.46 155.6 3270 9010 0.42 46.5 1000 2770 0.46 154.2 2540 8770 0.45 47.0 780 2670 0.46 155.8 2610 9390 0.46 47.5 800 2860 0.46 157.5 2710 9390 0.45 48.0 830 2860 0.46 160.8 1960 7840 0.47 49.5 580 2180 0.46 166.7 1667 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.6 530 2030 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 177.9 1750 7900 0.47 53.6 530 2140 0.47 177.2 1940 6670 0.46 55.5 580 2140 0.46 188.7 1850 7410 0.47 53.6 530 2140 $0.$									
144.4 2380 8230 0.45 146.0 2180 7840 0.46 147.6 2540 7250 0.43 149.3 1940 7410 0.46 150.9 2410 8770 0.46 150.9 2410 8770 0.46 152.6 3270 9010 0.42 154.2 2540 8770 0.45 155.8 2610 9390 0.46 157.5 2710 9390 0.45 155.8 2610 9390 0.46 157.5 2710 9390 0.45 159.1 2160 7750 0.46 160.8 1960 7840 0.47 162.4 1920 7170 0.46 164.0 1610 6670 0.47 165.7 1650 6600 0.47 167.3 1830 6730 0.46 170.6 1570 6470 0.47 172.2 1520 6600 0.47 177.2 1940 6670 0.47 177.2 1940 6670 0.47 177.2 1940 6670 0.46 183.7 1860 7020 0.47 187.0 1990 7250 0.46 188.7 1850 7410 0.47 187.0 190 0.200 0.47 187.0 190 0.200 0.47 188.7 1850 7410 0.47 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
146.0 2180 7840 0.46 147.6 2540 7250 0.43 149.3 1940 7410 0.46 150.9 2410 8770 0.46 152.6 3270 9010 0.42 154.2 2540 8770 0.45 155.8 2610 9390 0.46 157.5 2710 9390 0.46 159.1 2160 7750 0.46 160.8 1980 7840 0.47 162.4 1920 7170 0.46 164.0 1610 6670 0.47 165.7 1650 6600 0.47 165.7 1650 6600 0.47 165.7 1650 6600 0.47 165.7 1650 6600 0.47 177.6 1570 0.46 170.6 1570 0.46 170.6 1570 0.47 177.2 1940 6670 177.2 1940 6670 177.2 1940 6670 177.2 1940 6670 183.7 1860 183.7 1860 183.7 1860 183.7 1860 188.7 1850 190.3 2250 7170 0.46 58.5 580 2140 0.47 58.5 580 2140 0.47 58.6 580 2250 7170 0.46 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
147.6 2540 7250 0.43 45.0 780 2210 0.43 149.3 1940 7410 0.46 45.5 590 2260 0.46 150.9 2410 8770 0.46 46.5 1000 2750 0.42 154.2 2540 8770 0.45 46.5 1000 2750 0.42 155.8 2610 9390 0.46 47.5 800 2860 0.46 157.5 2710 9390 0.45 48.0 830 2860 0.46 160.8 1960 7750 0.46 48.5 6602 2360 0.46 160.8 1960 7740 0.46 49.5 580 2180 0.46 161.4 1610 6670 0.47 49.5 580 2180 0.46 166.3 170.6 1570 6470 0.47 51.0 560 2050 0.47 172.2 1520 6600 0.47 52.0 480 1970 0.47 177.2 1940 6800 0.46 51.6 530 2030 0.46 180.5 1940 6670 0.46 54.5 580 2140 0.47 177.2 1940 6800 0.46 55.5 580 2100 0.47 177.2 1920 0.47 53.6 530 2100 0.47 177.2 1920 0.47 55.5 580 2100									
149.3 1940 7410 0.46 45.5 590 2260 0.46 150.9 2410 8770 0.46 46.0 730 2670 0.46 152.6 3270 9010 0.42 46.5 1000 2750 0.42 154.2 2540 8770 0.45 47.5 800 2860 0.46 157.5 2710 9390 0.45 47.5 800 2860 0.46 157.5 2710 9390 0.45 48.0 830 2860 0.46 160.8 1960 7840 0.47 49.0 600 2390 0.47 162.4 1920 7170 0.46 48.5 660 2360 0.46 164.0 1610 6670 0.47 50.5 500 2010 0.47 165.7 1850 6600 0.47 51.6 530 2030 0.47 167.3 1830 6730 0.46 51.6 530 2030 0.46 169.3 1740 6670 0.47 52.5 460 2010 0.47 177.2 1520 6600 0.47 53.6 530 2180 0.47 177.2 1940 6870 0.46 54.5 580 2140 0.47 177.2 1940 6670 0.46 55.5 540 2140 0.47 178.8 1910 7250 0.46 55.5 580 23									
150.9 2410 8770 0.46 152.6 3270 9010 0.42 154.2 2540 8770 0.45 155.8 2610 9390 0.46 157.5 2710 9390 0.46 157.5 2710 9390 0.46 157.5 2710 9390 0.46 160.8 1960 7840 0.47 162.4 1920 7170 0.46 164.0 1610 6670 0.47 165.7 1650 6600 0.47 165.7 1650 6600 0.47 177.3 1830 6730 0.46 169.3 1740 6670 0.47 177.2 1520 6600 0.47 177.2 1520 6600 0.47 177.2 1520 6600 0.47 177.2 1940 6800 0.46 188.7 1860 7250 0.46 183.7 1860 7250 0.46 183.7 1860 7250 0.46 188.7 1850 7410 0.47 187.0 1690 8030 0.48 188.7 1850 7410 0.47 51.5 560 2260 0.47 51.6 51.0 510 2450 0.48 57.0 510 2450 0.46 55.5 580 2140 0.47 55.5 580 2200 0.46 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1							
152.6 3270 9010 0.42 46.5 1000 2750 0.42 154.2 2540 8770 0.45 47.0 780 2670 0.45 155.8 2610 9390 0.46 47.5 800 2860 0.46 157.5 2710 9390 0.46 48.0 830 2860 0.46 159.1 2160 7750 0.46 48.5 660 2390 0.47 162.4 1920 7170 0.46 49.0 600 2390 0.47 165.7 1650 6600 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.6 530 2030 0.46 169.3 1740 6670 0.46 51.6 530 2030 0.46 177.6 1570 6470 0.47 52.0 480 1970 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 177.2 1940 6800 0.46 54.5 580 2140 0.47 177.2 1940 6870 0.45 55.5 580 2300 0.46 180.5 1940 6670 0.46 55.5 580 2140 0.47 177.2 1940 6670 0.46 55.5 580 2300 0.46 188.7 1860 7250 0.46 55.5 580 23									
154.2 2540 8770 0.45 47.0 780 2670 0.45 155.8 2610 9390 0.46 47.5 800 2860 0.46 157.5 2710 9390 0.45 48.0 830 2860 0.46 159.1 2160 7750 0.46 48.5 660 2360 0.46 160.8 1960 7840 0.47 49.0 600 2390 0.47 162.4 1920 7170 0.46 49.5 580 2180 0.46 164.0 1610 6670 0.47 50.5 500 2030 0.47 165.7 1650 6600 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.6 530 2030 0.46 170.6 1570 6470 0.47 52.0 480 1970 0.47 177.2 1520 6600 0.47 53.6 530 2160 0.47 177.2 1940 6870 0.46 54.5 580 2140 0.47 177.2 1940 6670 0.46 55.5 580 2140 0.46 188.7 1860 7250 0.46 55.5 580 2140 0.46 188.7 1860 7250 0.46 56.5 540 2140 0.47 190.3 2350 7580 0.43 58.5 790 223									
155.8 2610 9390 0.46 47.5 800 2860 0.46 157.5 2710 9390 0.45 48.0 830 2860 0.45 159.1 2160 7750 0.46 48.5 660 2360 0.46 160.8 1960 7840 0.47 49.0 600 2390 0.47 162.4 1920 7170 0.46 49.5 580 2180 0.46 164.0 1610 6670 0.47 50.5 500 2010 0.47 165.7 1650 6600 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.6 530 2030 0.46 170.6 1570 6470 0.47 52.5 460 2010 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 177.2 1940 6800 0.46 54.5 580 2140 0.47 177.2 1940 6670 0.46 54.5 580 2140 0.46 185.4 1760 7020 0.47 55.5 580 2030 0.46 188.7 1860 7250 0.46 55.5 540 2140 0.47 187.0 1690 8030 0.48 57.5 560 2260 0.47 190.3 2350 7580 0.43 58.5 790 223									
157.5 2710 9390 0.45 48.0 830 2860 0.45 159.1 2160 7750 0.46 48.5 660 2360 0.46 160.8 1960 7840 0.47 49.0 600 2390 0.47 162.4 1920 7170 0.46 49.5 580 2180 0.46 164.0 1610 6670 0.47 50.5 500 2010 0.47 165.7 1650 6600 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.6 530 2030 0.46 169.3 1740 6670 0.47 52.5 460 2010 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 177.2 1940 6800 0.46 51.6 530 2140 0.47 177.2 1940 6800 0.46 54.5 580 2140 0.46 180.5 1940 6670 0.46 55.5 580 2030 0.46 183.7 1860 7250 0.46 55.5 580 2230 0.46 188.7 1850 7410 0.47 57.5 560 2260 0.47 190.3 2350 7580 0.45 58.5 790 2230 0.43 191.9 2600 7330 0.43 59.5 750 216		2540	8770	0.45			780	2670	
159.1 2160 7750 0.46 48.5 660 2360 0.46 160.8 1960 7840 0.47 49.0 600 2390 0.47 162.4 1920 7170 0.46 49.5 580 2180 0.46 164.0 1610 6670 0.47 50.0 490 2030 0.47 165.7 1650 6600 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.6 530 2030 0.46 169.3 1740 6670 0.46 51.6 530 2030 0.46 170.6 1570 6470 0.47 52.0 480 1970 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 177.2 1940 6800 0.46 54.0 530 2140 0.47 177.2 1940 6670 0.45 55.0 590 2030 0.46 188.5 1940 6670 0.46 55.5 580 2140 0.46 183.7 1860 7250 0.46 56.5 540 2140 0.47 187.0 1690 8030 0.43 57.0 510 2450 0.48 188.7 1850 7410 0.47 57.5 560 2260 0.47 190.3 2350 7580 0.45 58.5 790 230	155.8	2610	9390	0.46			800	2860	0.46
160.8 1960 7840 0.47 49.0 600 2390 0.47 162.4 1920 7170 0.46 49.5 580 2180 0.46 164.0 1610 6670 0.47 50.0 490 2030 0.47 165.7 1650 6600 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.6 530 2030 0.46 169.3 1740 6670 0.46 51.6 530 2030 0.46 170.6 1570 6470 0.47 52.0 480 1970 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 177.9 1750 7090 0.47 53.6 530 2140 0.47 177.2 1940 6800 0.46 54.5 580 2140 0.46 188.5 1940 6670 0.46 55.5 580 2030 0.46 183.7 1860 7250 0.46 55.5 580 2030 0.46 185.4 1760 7020 0.47 56.5 540 2140 0.47 190.3 2350 7580 0.45 58.0 720 2310 0.45 191.9 2600 7330 0.43 59.5 750 2160 0.43	157.5	2710	9390	0.45		48.0	830	2860	0.45
162.4 1920 7170 0.46 49.5 580 2180 0.46 164.0 1610 6670 0.47 50.0 490 2030 0.47 165.7 1650 6600 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.0 560 2050 0.46 169.3 1740 6670 0.47 51.0 560 2030 0.46 170.6 1570 6470 0.47 52.0 480 1970 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 177.9 1750 7090 0.47 53.6 530 2160 0.47 177.2 1940 6800 0.46 54.5 580 2140 0.47 177.2 1940 6670 0.45 55.5 580 2140 0.46 188.5 1910 7020 0.46 55.5 580 2030 0.46 183.7 1860 7250 0.46 56.0 570 2210 0.46 185.4 1760 7020 0.47 56.5 540 2140 0.47 190.3 2350 7580 0.45 58.0 720 2310 0.45 191.9 2600 7330 0.43 59.5 750 2160 0.43 195.2 2470 7090 0.43 59.5 750 216	159.1	2160	7750	0.46		48.5	660	2360	0.46
164.0 1610 6670 0.47 50.0 490 2030 0.47 165.7 1650 6600 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.0 560 2050 0.46 169.3 1740 6670 0.46 51.6 530 2030 0.46 170.6 1570 6470 0.47 52.0 480 1970 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 173.9 1660 7020 0.47 53.6 530 2140 0.47 177.2 1940 6800 0.46 54.5 580 2140 0.47 177.2 1940 6870 0.45 55.0 590 2030 0.46 180.5 1940 6670 0.46 54.5 580 2140 0.46 183.7 1860 7250 0.46 55.5 580 2030 0.46 185.4 1760 7020 0.47 56.5 540 2140 0.47 190.3 2350 7580 0.45 58.0 720 2310 0.45 191.9 2600 7330 0.43 59.5 750 2160 0.43	160.8	1960	7840	0.47		49.0	600	2390	0.47
165.7 1650 6600 0.47 50.5 500 2010 0.47 167.3 1830 6730 0.46 51.0 560 2050 0.46 169.3 1740 6670 0.46 51.6 530 2030 0.46 170.6 1570 6470 0.47 52.0 480 1970 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 177.9 1660 7020 0.47 53.0 510 2140 0.47 177.9 1750 7090 0.47 53.6 530 2160 0.47 177.2 1940 6800 0.46 54.0 590 2070 0.46 180.5 1940 6670 0.45 55.0 590 2030 0.45 182.1 1890 6670 0.46 55.5 580 2140 0.47 185.4 1760 7020 0.47 56.5 540 2140 0.47 187.0 1690 8030 0.48 57.0 510 2450 0.48 188.7 1850 7410 0.47 57.5 560 2260 0.47 190.3 2350 7580 0.45 58.0 720 2310 0.45 191.9 2600 7330 0.43 58.5 790 2230 0.43 193.6 2250 7170 0.45 59.0 690 218	162.4	1920	7170	0.46		49.5	580	2180	0.46
167.3 1830 6730 0.46 51.0 560 2050 0.46 169.3 1740 6670 0.46 51.6 530 2030 0.46 170.6 1570 6470 0.47 52.0 480 1970 0.47 172.2 1520 6600 0.47 52.5 460 2010 0.47 173.9 1660 7020 0.47 53.6 530 2140 0.47 175.9 1750 7090 0.47 53.6 530 2160 0.47 177.2 1940 6800 0.46 54.5 580 2140 0.46 178.8 1910 7020 0.46 54.5 580 2140 0.46 180.5 1940 6670 0.45 55.5 580 2030 0.46 183.7 1860 7250 0.46 56.5 540 2140 0.47 187.0 1690 8030 0.48 57.0 510 2210 0.46 188.7 1850 7410 0.47 57.5 560 2260 0.47 190.3 2350 7580 0.45 58.0 720 2310 0.45 191.9 2600 7330 0.43 59.5 790 2230 0.43 193.6 2250 7170 0.45 59.0 690 2180 0.45 195.2 2470 7090 0.43 59.5 750 216	164.0	1610	6670	0.47		50.0	490	2030	0.47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	165.7	1650	6600	0.47		50.5	500	2010	0.47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	167.3	1830	6730	0.46		51.0	560	2050	0.46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	169.3	1740	6670	0.46		51.6	530	2030	0.46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.6	1570	6470	0.47		52.0	480	1970	0.47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	172.2	1520	6600	0.47		52.5	460	2010	0.47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	173.9	1660	7020	0.47		53.0	510	2140	0.47
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	175.9	1750	7090	0.47		53.6	530	2160	0.47
180.5194066700.4555.059020300.45182.1189066700.4655.558020300.46183.7186072500.4656.057022100.46185.4176070200.4756.554021400.47187.0169080300.4857.051024500.48188.7185074100.4757.556022600.47190.3235075800.4558.072023100.45191.9260073300.4358.579022300.43195.2247070900.4359.575021600.43	177.2	1940	6800	0.46		54.0	590	2070	0.46
180.5194066700.4555.059020300.45182.1189066700.4655.558020300.46183.7186072500.4656.057022100.46185.4176070200.4756.554021400.47187.0169080300.4857.051024500.48188.7185074100.4757.556022600.47190.3235075800.4558.072023100.45191.9260073300.4358.579022300.43195.2247070900.4359.575021600.43	178.8	1910	7020	0.46		54.5	580	2140	0.46
183.7186072500.4656.057022100.46185.4176070200.4756.554021400.47187.0169080300.4857.051024500.48188.7185074100.4757.556022600.47190.3235075800.4558.072023100.45191.9260073300.4358.579022300.43193.6225071700.4559.069021800.45195.2247070900.4359.575021600.43	180.5		6670	0.45		55.0	590		0.45
185.4176070200.4756.554021400.47187.0169080300.4857.051024500.48188.7185074100.4757.556022600.47190.3235075800.4558.072023100.45191.9260073300.4358.579022300.43193.6225071700.4559.069021800.45195.2247070900.4359.575021600.43	182.1	1890	6670	0.46		55.5	580	2030	0.46
185.4176070200.4756.554021400.47187.0169080300.4857.051024500.48188.7185074100.4757.556022600.47190.3235075800.4558.072023100.45191.9260073300.4358.579022300.43193.6225071700.4559.069021800.45195.2247070900.4359.575021600.43	183.7	1860	7250	0.46		56.0	570	2210	0.46
187.0169080300.4857.051024500.48188.7185074100.4757.556022600.47190.3235075800.4558.072023100.45191.9260073300.4358.579022300.43193.6225071700.4559.069021800.45195.2247070900.4359.575021600.43									
188.7185074100.4757.556022600.47190.3235075800.4558.072023100.45191.9260073300.4358.579022300.43193.6225071700.4559.069021800.45195.2247070900.4359.575021600.43		1690	8030	0.48					
190.3235075800.4558.072023100.45191.9260073300.4358.579022300.43193.6225071700.4559.069021800.45195.2247070900.4359.575021600.43									0.47
191.9260073300.4358.579022300.43193.6225071700.4559.069021800.45195.2247070900.4359.575021600.43									
193.6225071700.4559.069021800.45195.2247070900.4359.575021600.43									
195.2 2470 7090 0.43 59.5 750 2160 0.43		1							
	196.9	2050	6730	0.45		60.0	630	2050	0.45
198.5 2040 6470 0.44 60.5 620 1970 0.44									

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole IBR-2

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole IBR-2

American Units				Metric Units				
Depth at	Velo	ocity			Depth at	Velo	ocity	
Midpoint					Midpoint			
Between			Poisson's		Between			Poisson's
Receivers	Vs	Vp	Ratio		Receivers	Vs	Vp	Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
200.1	1890	6940	0.46		61.0	580	2120	0.46
201.8	1960	6870	0.46		61.5	600	2090	0.46
203.4	1880	7170	0.46		62.0	570	2180	0.46
205.1	2190	6730	0.44		62.5	670	2050	0.44
206.7	2370	7660	0.45		63.0	720	2340	0.45
208.3	1890	7660	0.47		63.5	580	2340	0.47
210.0	1680	6940	0.47		64.0	510	2120	0.47
211.6	2270	7410	0.45		64.5	690	2260	0.45
213.3	3130	8130	0.41		65.0	950	2480	0.41

"-" means no data available at that particular interval of depth.

Notes:

Table 4. Borehole IBR-03, Suspension R1-R2 depths and P- and S_H-wave velocities

A	American Units				Metric Units					
Depth at Midpoint Between		ocity	Poisson's		Depth at Midpoint Between		ocity	Poisson's		
Receivers	Vs	Vp	Ratio		Receivers	Vs	Vp	Ratio		
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)			
45.9	-	-	-		14.0	-	-	-		
47.6	520	3280	0.49		14.5	160	1000	0.49		
49.2	560	4760	0.49		15.0	170	1450	0.49		
50.9	570	5170	0.49		15.5	180	1580	0.49		
52.5	570	4600	0.49		16.0	180	1400	0.49		
54.5	610	5010	0.49		16.6	190	1530	0.49		
55.8	580	5460	0.49		17.0	180	1670	0.49		
57.4	550	5510	0.50		17.5	170	1680	0.50		
59.4	600	5420	0.49		18.1	180	1650	0.49		
60.7	530	5380	0.50		18.5	160	1640	0.50		
62.3	600	5130	0.49		19.0	180	1560	0.49		
64.0	580	5330	0.49		19.5	180	1630	0.49		
65.6	590	5130	0.49		20.0	180	1560	0.49		
67.3	620	5090	0.49		20.5	190	1550	0.49		
68.9	560	5130	0.49		21.0	170	1560	0.49		
70.5	540	4660	0.49		21.5	170	1420	0.49		
72.2	520	5290	0.50		22.0	160	1610	0.50		
73.8	540	5650	0.50		22.5	160	1720	0.50		
75.5	550	5600	0.50		23.0	170	1710	0.50		
77.1	570	5290	0.49		23.5	180	1610	0.49		
78.7	560	5420	0.49		24.0	170	1650	0.49		
80.4	520	5330	0.50		24.5	160	1630	0.50		
82.0	540	5330	0.49		25.0	170	1630	0.49		
83.7	510	5250	0.50		25.5	160	1600	0.50		
85.3	590	5460	0.49		26.0	180	1670	0.49		
86.9	600	5210	0.49		26.5	180	1590	0.49		
88.6	600	5130	0.49		27.0	180	1560	0.49		
90.2	570	4830	0.49		27.5	170	1470	0.49		
91.9	580	5600	0.49		28.0	180	1710	0.49		
93.5	600	5510	0.49	1	28.5	180	1680	0.49		
95.1	630	5010	0.49	1	29.0	190	1530	0.49		
96.8	630	5210	0.49	1	29.5	190	1590	0.49		
98.4	630	5210	0.49	1	30.0	190	1590	0.49		
100.1	670	5290	0.49	1	30.5	200	1610	0.49		
101.7	680	5510	0.49	1	31.0	210	1680	0.49		
103.4	680	5250	0.49	1	31.5	210	1600	0.49		
105.0	660	5380	0.49	1	32.0	200	1640	0.49		
107.0	690	5650	0.49	1	32.6	210	1720	0.49		

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole IBR-3

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole IBR-3

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	American Units			Metric Units				
Between ReceiversVs by (ft) V_p (ft/s)Poisson's RatioBetween ReceiversVs by VsPoisson's Ratio108.365052900.4933.020016100.49109.966051700.4933.520015800.49111.672055100.4934.524016000.49111.671053300.4935.522016300.49111.671053300.4935.522016500.49111.165054200.4935.522016500.49121.464054600.4937.020016600.49122.063052500.4937.519016000.49128.069051700.4938.521016000.49132.972052100.4938.521016000.49132.972052100.4941.022015800.49137.874051700.4942.022015800.49137.874052100.4942.022015800.49144.472052000.4944.522016300.49144.472052000.4944.522016300.49146.071052100.4944.522016300.49155.87305330	Depth at	Velo	ocity		Depth at	Velocity		
ReceiversVsVpRatioReceiversVsVpRatio(ft)(ft/s)(ft/s)(ft/s)(ft/s)(ft/s)(ft/s)(ft/s)(ft/s)108.365052900.4933.020016100.49110.966051700.4933.520016800.49111.672055100.4935.522016800.49111.889054200.4935.522016300.49118.166051300.4935.522016300.49119.165054200.4936.320016600.49121.464054600.4937.020016700.49122.566052500.4938.019016100.49128.669051700.4938.521015800.49132.972052100.4940.522015800.49133.574051700.4941.622015800.49134.573053000.4941.622015800.49137.874051700.4943.523016500.49144.472052000.4943.523016500.49144.472052000.4943.523016500.49144.674053300.4945.62201580								
(ft)(ft/s)(ft/s)(m)(m/s)(m/s) 108.3 65052900.4933.020016100.49 109.9 66051700.4933.520016300.49 111.6 72055100.4934.022016800.49 113.2 78052500.4934.524016000.49 114.8 89054200.4935.522016500.49 116.5 71053300.4935.522016500.49 121.4 64054600.4937.020016500.49 122.0 63052500.4937.519016000.49 122.0 63052500.4937.519016000.49 122.0 66051700.4938.520016600.49 132.9 72052100.4938.521015800.49 133.5 74051700.4940.022015800.49 134.5 73050900.4941.622015800.49 144.4 72052100.4942.621016500.49 144.4 72052200.4943.523016300.49 144.6 71052100.4943.522015900.49 145.7 7305300.4943.522016500.49			v			v	V	
108.3 650 5290 0.49 109.9 660 5170 0.49 111.6 720 5510 0.49 111.2 780 5250 0.49 111.4 890 5420 0.49 111.6 710 5330 0.49 111.6 710 5330 0.49 111.6 650 5420 0.49 111.6 650 5420 0.49 111.1 660 5130 0.49 111.1 660 5130 0.49 112.1 640 5460 0.49 122.4 630 5250 0.49 122.4 630 5250 0.49 122.6 700 5170 0.49 128.0 690 5170 0.49 131.2 710 5210 0.49 132.9 720 5210 0.49 133.5 730 5090 0.49 133.6 740 5170 0.49 144.6 770 5330 0.49 144.6 770 5330 0.49 144.6 770 5330 0.49 144.6 770 5330 0.49 145.2 750 5560 0.49 144.6 770 5330 0.49 44.5 220 1630 0.49 44.6 210 1600 0.49 44.5 220 1630 0.49 44.6 210 1				Ratio				Ratio
109.9 660 5170 0.49 33.5 200 1580 0.49 111.6 720 5510 0.49 34.5 240 1600 0.49 113.2 780 5250 0.49 34.5 240 1600 0.49 114.8 890 5420 0.49 35.5 220 1650 0.49 116.5 710 5330 0.49 35.5 220 1650 0.49 111.1 660 5130 0.49 35.5 220 1650 0.49 121.4 640 5460 0.49 37.0 200 1670 0.49 122.4 630 5250 0.49 37.5 190 1600 0.49 122.6 690 5170 0.49 38.5 200 1600 0.49 132.9 720 5210 0.49 40.5 220 1580 0.49 132.9 720 5210 0.49 41.6 220 1550 0.49 133.8 680 5420 0.49 41.6 220 1550 0.49 144.4 720 5230 0.49 44.5 220 1550 0.49 144.4 720 5250 0.49 44.5 220 1630 0.49 144.4 720 5250 0.49 44.5 220 1630 0.49 144.6 770 5330 0.49 44.5 220 1630 0.49	\ /	· · /	· · /	0.40		· · · /	, ,	0.40
111.6720 5510 0.49 113.2780 5250 0.49 114.8890 5420 0.49 116.5710 5330 0.49 116.5710 5330 0.49 118.1 660 5130 0.49 121.4 640 5420 0.49 123.0 630 5250 0.49 123.0 630 5250 0.49 124.7 630 5250 0.49 128.0 660 5170 0.49 128.0 660 5170 0.49 132.9720 5210 0.49 134.5730 5090 0.49 135.5740 5170 0.49 137.8740 5210 0.49 144.4720 5200 0.49 144.5730 5090 0.49 144.6710 5210 0.49 144.7740 5330 0.49 144.6710 5210 0.49 144.6710 5210 0.49 145.2750 5560 0.49 155.8730 5330 0.49 155.8730 5330 0.49 155.7 870 5420 0.49 155.7 870 5330 0.49 46.5220 1630 0.49 47.5220 1630 0.49 46.5220 1630 0.49 47.5220 1630 0.49								
113.27805250 0.49 114.88905420 0.49 116.57105330 0.49 118.16605130 0.49 118.16505420 0.49 121.46405460 0.49 123.06305250 0.49 124.76305290 0.49 126.36605250 0.49 128.06905170 0.49 131.27105210 0.49 132.97205210 0.49 134.57305090 0.49 135.57405170 0.49 139.86805420 0.49 144.47205210 0.49 144.47205210 0.49 144.47205210 0.49 144.47205210 0.49 144.47205210 0.49 155.8730530 0.49 44.67105210 0.49 45.62301630 0.49 45.62301630 0.49 45.62201590 0.49 45.62201670 0.49 45.62201670 0.49 46.07105250 0.49 45.62201630 0.49 45.62201630 0.49 45.62201630 0.49 46.02201580 0.49 46.0220								
114.8890 5420 0.49 116.5710 5330 0.49 118.1660 5130 0.49 119.1650 5420 0.49 121.4640 5460 0.49 123.0630 5250 0.49 124.7630 5290 0.49 126.3660 5250 0.49 128.0690 5170 0.49 129.6700 5170 0.49 131.2710 5210 0.49 132.9720 5210 0.49 134.5730 5090 0.49 137.8740 5210 0.49 144.4720 5290 0.49 144.4720 5200 0.49 144.4720 5200 0.49 144.4720 5200 0.49 144.4720 5200 0.49 145.2750 5560 0.49 146.0710 5210 0.49 44.02201650 0.49 146.0710 5210 0.49 45.62301650 0.49 155.8730 5330 0.49 45.62201670 0.49 45.62201670 0.49 45.62201630 0.49 45.62201630 0.49 45.62201630 0.49 45.77205560 0.49 46.02201630								
116.57105330 0.49 118.16605130 0.49 119.16505420 0.49 121.46405460 0.49 121.46405460 0.49 123.06305250 0.49 124.76305290 0.49 128.06905170 0.49 128.06905170 0.49 131.27105210 0.49 132.97205210 0.49 134.57305090 0.49 137.87405170 0.49 144.47205290 0.49 144.47205290 0.49 144.67105210 0.49 144.67105210 0.49 145.57305090 0.49 44.02201580 0.49 142.77405330 0.49 44.02201650 0.49 142.77405330 0.49 44.62101650 0.49 45.62201630 0.49 45.62201630 0.49 45.62201630 0.49 45.77305330 0.49 45.87305330 0.49 45.62201630 0.49 45.77305330 0.49 45.62201630 0.49 45.77205560 0.49 46.5220								
118.16605130 0.49 119.16505420 0.49 121.46405460 0.49 123.06305250 0.49 124.76305290 0.49 126.36605250 0.49 128.06905170 0.49 129.67005170 0.49 131.27105210 0.49 132.97205210 0.49 134.57305090 0.49 137.87405170 0.49 139.86805420 0.49 144.47205290 0.49 144.67105210 0.49 144.67105210 0.49 144.67105210 0.49 144.67105210 0.49 144.67105210 0.49 144.67105210 0.49 145.57305330 0.49 44.52201580 0.49 45.62301650 0.49 45.62301630 0.49 45.62301630 0.49 45.62201670 0.49 45.62301630 0.49 45.62301630 0.49 45.77205170 0.49 46.02101600 0.49 45.62301630 0.49 45.77205170 0.49 46.5220 <td< td=""><td></td><td></td><td></td><td></td><td>A</td><td></td><td></td><td></td></td<>					A			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
121.4 640 5460 0.49 123.0 630 5250 0.49 124.7 630 5290 0.49 126.3 660 5250 0.49 128.0 690 5170 0.49 128.0 690 5170 0.49 129.6 700 5170 0.49 131.2 710 5210 0.49 132.9 720 5210 0.49 136.5 740 5170 0.49 136.5 740 5210 0.49 137.8 740 5210 0.49 137.8 740 5210 0.49 141.1 680 5380 0.49 144.4 720 520 0.49 144.4 720 520 0.49 144.6 710 5210 0.49 44.5 220 1590 0.49 44.6 210 1650 0.49 44.5 220 1630 0.49 44.6 210 1630 0.49 44.6 210 1630 0.49 45.6 230 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 46.5 220 1630 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
126.3 660 5250 0.49 128.0 690 5170 0.49 128.0 690 5170 0.49 129.6 700 5170 0.49 131.2 710 5210 0.49 132.9 720 5210 0.49 134.5 730 5090 0.49 136.5 740 5170 0.49 136.5 740 5170 0.49 137.8 740 5210 0.49 139.8 680 5420 0.49 141.1 680 5380 0.49 142.7 740 5220 0.49 144.4 720 5290 0.49 147.6 740 5330 0.49 147.6 740 5330 0.49 146.0 710 5210 0.49 44.5 220 1550 0.49 44.5 220 1630 0.49 147.6 740 5330 0.49 45.6 230 1630 0.49 45.6 230 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
128.0 690 5170 0.49 129.6 700 5170 0.49 131.2 710 5210 0.49 132.9 720 5210 0.49 134.5 730 5090 0.49 136.5 740 5170 0.49 137.8 740 5210 0.49 137.8 740 5210 0.49 139.8 680 5420 0.49 141.1 680 5380 0.49 142.7 740 5420 0.49 144.4 720 5290 0.49 144.6 710 5210 0.49 144.6 710 5210 0.49 44.5 220 1590 0.49 142.7 740 5420 0.49 144.6 710 5210 0.49 44.5 220 1650 0.49 44.6 220 1630 0.49 145.6 730 5330 0.49 45.6 230 1630 0.49 45.6 220 1630 0.49 45.6 220 1670 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.6 220 1630 0.49 45.7 790 5250 0.48 49.0 270 1630 0.49 45.6 220 1630								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-						
131.2 710 5210 0.49 40.0 220 1590 0.49 132.9 720 5210 0.49 40.5 220 1590 0.49 134.5 730 5090 0.49 41.0 220 1550 0.49 136.5 740 5170 0.49 41.6 220 1550 0.49 137.8 740 5210 0.49 41.6 220 1550 0.49 139.8 680 5420 0.49 42.6 210 1650 0.49 141.1 680 5380 0.49 43.5 230 1650 0.49 142.7 740 5420 0.49 43.5 220 1590 0.49 144.4 720 5290 0.49 44.5 220 1610 0.49 146.0 710 5210 0.49 44.5 220 1630 0.49 147.6 740 5330 0.49 45.6 230 1630 0.49 145.2 750 5560 0.49 47.5 220 1630 0.49 155.8 730 5330 0.49 47.5 220 1630 0.49 155.8 730 5330 0.48 49.0 270 1600 0.48 162.4 950 5330 0.48 49.0 270 1600 0.48 162.4 950 5330 0.49 49.0 270 1600 0.48		-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		700				210	1580	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	131.2	710	5210	0.49	40.0	220	1590	0.49
136.5 740 5170 0.49 41.6 220 1580 0.49 137.8 740 5210 0.49 42.0 220 1590 0.49 139.8 680 5420 0.49 42.6 210 1650 0.49 141.1 680 5380 0.49 43.0 210 1640 0.49 142.7 740 5420 0.49 43.5 230 1650 0.49 144.4 720 5290 0.49 44.5 220 1610 0.49 146.0 710 5210 0.49 44.5 220 1630 0.49 147.6 740 5330 0.49 45.6 230 1630 0.49 149.6 770 5330 0.49 45.6 230 1630 0.49 150.9 700 5250 0.49 46.5 220 1670 0.49 152.6 730 5460 0.49 47.5 220 1630 0.49 157.5 720 5170 0.49 48.5 240 1610 0.49 160.8 900 5250 0.48 49.0 270 1600 0.48 162.4 950 5330 0.49 50.0 260 1640 0.49 165.7 870 5420 0.49 50.5 270 1630 0.49 167.3 890 5330 0.49 51.0 270 1630 0.49	132.9	720	5210	0.49	40.5	220	1590	0.49
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	134.5	730	5090	0.49	41.0	220	1550	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	136.5	740	5170	0.49	41.6	220	1580	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	137.8	740	5210	0.49	42.0	220	1590	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	139.8	680	5420	0.49	42.6	210	1650	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	141.1	680	5380	0.49	43.0	210	1640	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	142.7	740	5420	0.49	43.5	230	1650	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	144.4	720	5290	0.49	44.0	220	1610	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	146.0	710	5210	0.49	44.5	220	1590	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.6	740	5330	0.49	45.0	220	1630	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.6	770	5330	0.49	45.6	230	1630	0.49
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	150.9	700	5250	0.49	46.0	210	1600	0.49
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	152.6	730	5460	0.49	46.5	220	1670	0.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5560					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	155.8	730	5330	0.49	47.5	220	1630	0.49
159.179052900.4948.524016100.49160.890052500.4849.027016000.48162.495053300.4849.529016300.48164.084053800.4950.026016400.49165.787054200.4950.527016500.49167.389053300.4951.027016300.49				0.49				
160.890052500.4849.027016000.48162.495053300.4849.529016300.48164.084053800.4950.026016400.49165.787054200.4950.527016500.49167.389053300.4951.027016300.49								
162.495053300.4849.529016300.48164.084053800.4950.026016400.49165.787054200.4950.527016500.49167.389053300.4951.027016300.49								
164.084053800.4950.026016400.49165.787054200.4950.527016500.49167.389053300.4951.027016300.49								
165.787054200.4950.527016500.49167.389053300.4951.027016300.49								
167.3 890 5330 0.49 51.0 270 1630 0.49								
170.6 820 5330 0.49 52.0 250 1630 0.49								
172.2 750 5290 0.49 52.5 230 1610 0.49								

American Units				Metric Units					
Depth at	Velo	ocity			Depth at	Velo	ocity		
Midpoint					Midpoint				
Between	v	V	Poisson's		Between	v	V	Poisson's	
Receivers	V _s	V _p	Ratio		Receivers	V _s	V _p	Ratio	
(ft) 173.9	(ft/s) 750	(ft/s) 5380	0.49		(m) 53.0	(m/s) 230	(m/s) 1640	0.49	
175.5	740	5420	0.49		53.5	230	1650	0.49	
175.5	740	5330	0.49		54.0	230	1630	0.49	
179.1	770	5250	0.49		54.6	230	1600	0.49	
180.5	760	5250	0.49		55.0	230	1600	0.49	
180.5	790	5290	0.49		55.6	230	1610	0.49	
183.7	810	5290	0.49		56.0	250	1610	0.49	
185.4	880	5330	0.49		56.5	270	1630	0.49	
187.0	880	5330	0.49		57.0	270	1630	0.49	
187.0	810	5380	0.49		57.5	250	1640	0.49	
190.3	810	5380	0.49		58.0	250	1640	0.49	
190.3	860	5380	0.49		58.6	260	1640	0.49	
193.6	850	5380	0.49		59.0	260	1640	0.49	
195.2	860	5330	0.49		59.5	260	1630	0.49	
196.9	900	5380	0.49		60.0	200	1640	0.49	
198.5	880	5290	0.49		60.5	270	1610	0.49	
200.1	890	5330	0.49		61.0	270	1630	0.49	
201.8	940	5380	0.48		61.5	290	1640	0.48	
203.4	910	5330	0.48		62.0	280	1630	0.48	
205.1	950	5330	0.48		62.5	290	1630	0.48	
207.0	970	5330	0.48		63.1	300	1630	0.48	
208.3	880	5290	0.49		63.5	270	1610	0.49	
210.0	860	5330	0.49		64.0	260	1630	0.49	
211.6	850	5420	0.49		64.5	260	1650	0.49	
213.3	760	5650	0.49		65.0	230	1720	0.49	
214.9	910	6940	0.49		65.5	280	2120	0.49	
216.5	1560	7250	0.48		66.0	470	2210	0.48	
218.2	2870	8230	0.43		66.5	880	2510	0.43	
219.8	4900	9520	0.32		67.0	1490	2900	0.32	
221.5	4630	9390	0.34		67.5	1410	2860	0.34	
223.1	4830	10420	0.36		68.0	1470	3180	0.36	
224.7	4980	9660	0.32		68.5	1520	2940	0.32	
226.4	5210	10750	0.35		69.0	1590	3280	0.35	
228.0	4900	10420	0.36		69.5	1490	3180	0.36	
229.7	4980	9800	0.33		70.0	1520	2990	0.33	
231.3	4690	9800	0.35	1	70.5	1430	2990	0.35	
232.9	4570	9660	0.36		71.0	1390	2940	0.36	
234.6	5130	9520	0.30		71.5	1560	2900	0.30	
236.2	5650	9950	0.26		72.0	1720	3030	0.26	
237.9	5460	10100	0.29		72.5	1670	3080	0.29	

Ar	nerican	Units		Ν	letric U	nits	
Depth at	Velo	ocity		Depth at	Velo	ocity	
Midpoint Between Receivers		v	Poisson's	Midpoint Between Receivers	v	v	Poisson's
(ft)	V _s (ft/s)	V _p (ft/s)	Ratio		V _s (m/s)	V_p	Ratio
239.5	5560	11110	0.33	(m) 73.0	1690	(m/s) 3390	0.33
239.5	4440	9390	0.35	73.5	1350	2860	0.35
241.1	3370	8770	0.30	74.0	1030	2670	0.30
242.8	3120	9130	0.41	74.5	950	2780	0.41
244.4	3060	9130	0.43	74.5	930	2760	0.43
240.1	2950	9390	0.43	75.5	900	2860	0.43
249.3	2950	8550	0.45	75.5	810	2610	0.45
249.3	2030	8550	0.45	76.5	760	2610	0.45
252.6	2490	8660	0.45	77.0	830	2640	0.45
252.0	2850	8660	0.43	77.5	870	2640	0.43
255.9	3120	9130	0.44	78.0	950	2780	0.44
257.6	3000	8330	0.43	78.5	930	2540	0.43
259.2	3040	9520	0.43	79.0	930	2900	0.43
260.8	3210	9950	0.44	79.5	980	3030	0.44
262.5	3920	9660	0.44	80.0	1200	2940	0.44
264.1	5130	10100	0.40	80.5	1560	3080	0.40
265.8	5130	10930	0.36	81.0	1560	3330	0.36
267.4	5090	10930	0.36	81.5	1550	3330	0.36
269.0	5250	10100	0.32	82.0	1600	3080	0.32
270.7	5330	10580	0.33	82.5	1630	3230	0.33
272.3	5330	10580	0.33	83.0	1630	3230	0.33
274.0	4760	10420	0.37	83.5	1450	3180	0.37
275.6	4360	10260	0.39	84.0	1330	3130	0.39
277.2	4870	10260	0.35	84.5	1480	3130	0.35
278.9	5850	9950	0.24	85.0	1780	3030	0.24
280.5	5210	10420	0.33	85.5	1590	3180	0.33
282.2	5050	10750	0.36	86.0	1540	3280	0.36

Table 5. Borehole IBR-05, Suspension R1-R2 depths and P- and S_H-wave velocities

Aı	nerican	Units			Metric Ui	nits	
Depth at	Velo	ocity		Depth at	Velo	ocity	
Midpoint Between			Deieeen'e	Midpoint Between			Deiecen'e
Receivers	Vs	Vp	Poisson's Ratio	Receivers	Vs	Vp	Poisson's Ratio
(ft)	(ft/s)	(ft/s)	(ullo	(m)	(m/s)	(m/s)	i tutio
39.4	(140)	- (100)	_	12.0	(11,0)	(11,0)	_
41.0	540	5090	0.49	12.5	160	1550	0.49
42.7	520	5210	0.49	13.0	160	1590	0.49
44.3	540	5210	0.49	13.5	160	1590	0.49
45.9	480	5210	0.50	14.0	150	1590	0.50
47.6	520	4980	0.49	14.5	160	1520	0.49
49.2	600	5420	0.49	15.0	180	1650	0.49
50.9	540	5330	0.49	15.5	170	1630	0.49
52.5	560	5170	0.49	16.0	170	1580	0.49
54.1	530	5170	0.49	16.5	160	1580	0.49
55.8	550	5250	0.49	17.0	170	1600	0.49
57.4	570	5290	0.49	17.5	170	1610	0.49
59.1	580	5290	0.49	18.0	180	1610	0.49
60.7	550	5250	0.49	18.5	170	1600	0.49
62.3	590	5330	0.49	19.0	180	1630	0.49
64.0	640	5330	0.49	19.5	200	1630	0.49
65.6	620	5250	0.49	20.0	190	1600	0.49
67.3	580	5420	0.49	20.5	180	1650	0.49
68.9	600	5290	0.49	21.0	180	1610	0.49
70.5	590	5420	0.49	21.5	180	1650	0.49
72.2	590	5420	0.49	22.0	180	1650	0.49
73.8	600	5380	0.49	22.5	180	1640	0.49
75.5	620	5330	0.49	23.0	190	1630	0.49
77.1	650	5380	0.49	23.5	200	1640	0.49
78.7	670	5290	0.49	24.0	210	1610	0.49
80.4	640	5290	0.49	24.5	200	1610	0.49
82.0	630	5380	0.49	25.0	190	1640	0.49
83.7	650	5330	0.49	25.5	200	1630	0.49
85.3	680	5380	0.49	26.0	210	1640	0.49
86.9	670	5330	0.49	26.5	200	1630	0.49
88.6	600	5380	0.49	27.0	180	1640	0.49
90.2	600	5330	0.49	27.5	180	1630	0.49
91.9	550	5250	0.49	28.0	170	1600	0.49
93.5	570	5330	0.49	28.5	180	1630	0.49
95.1	630	5330	0.49	29.0	190	1630	0.49
96.8	680	5330	0.49	29.5	210	1630	0.49
98.4	690	5290	0.49	30.0	210	1610	0.49
100.1	700	5290	0.49	30.5	210	1610	0.49

Ar	nerican	Units			Metric Units					
Depth at	Velo	ocity			Depth at	Velo	ocity			
Midpoint					Midpoint					
Between		V	Poisson's		Between			Poisson's		
Receivers	V _s	Vp	Ratio		Receivers	Vs	Vp	Ratio		
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)			
101.7	710	5290	0.49		31.0	220	1610	0.49		
103.4	760	5330	0.49		31.5	230	1630	0.49		
105.0	720	5330	0.49		32.0	220	1630	0.49		
106.6	660	5290	0.49		32.5	200	1610	0.49		
108.3	750	5330	0.49		33.0	230	1630	0.49		
109.9	830	5290	0.49		33.5	250	1610	0.49		
111.6	830	5380	0.49		34.0	250	1640	0.49		
113.2	750	5290	0.49		34.5	230	1610	0.49		
114.8	720	5330	0.49		35.0	220	1630	0.49		
116.5	690	5290	0.49		35.5	210	1610	0.49		
118.1	690	5380	0.49		36.0	210	1640	0.49		
119.8	720	5380	0.49		36.5	220	1640	0.49		
121.4	750	5380	0.49		37.0	230	1640	0.49		
123.0	780	5380	0.49		37.5	240	1640	0.49		
124.7	780	5460	0.49		38.0	240	1670	0.49		
126.3	740	5420	0.49		38.5	230	1650	0.49		
128.0	750	5510	0.49		39.0	230	1680	0.49		
129.6	800	5460	0.49		39.5	240	1670	0.49		
131.2	870	5510	0.49		40.0	270	1680	0.49		
132.9	860	5460	0.49		40.5	260	1670	0.49		
134.5	800	5420	0.49		41.0	240	1650	0.49		
136.5	780	5380	0.49		41.6	240	1640	0.49		
138.1	810	5380	0.49		42.1	250	1640	0.49		
139.4	820	5420	0.49		42.5	250	1650	0.49		
141.1	780	5420	0.49		43.0	240	1650	0.49		
142.7	800	5420	0.49		43.5	240	1650	0.49		
144.4	840	5460	0.49		44.0	260	1670	0.49		
146.0	860	5420	0.49		44.5	260	1650	0.49		
147.6	870	5420	0.49		45.0	270	1650	0.49		
149.3	870	5420	0.49		45.5	270	1650	0.49		
150.9	820	5420	0.49		46.0	250	1650	0.49		
152.6	810	5420	0.49		46.5	250	1650	0.49		
154.2	830	5420	0.49		47.0	250	1650	0.49		
155.8	850	5380	0.49		47.5	260	1640	0.49		
157.8	860	5460	0.49		48.1	260	1670	0.49		
157.8	870	5400	0.49	ĺ	48.5	270	1650	0.49		
160.8	840	5420	0.49		49.0	250	1650	0.49		
162.7	800	5420 5460	0.49		49.6	240	1650	0.49		
164.0	840	5460 5200			50.0	260	1670	0.49		
165.7	900	5290	0.49	Ľ	50.5	270	1610	0.49		

An	nerican	Units			Metric Units				
Depth at	Velo	ocity			Depth at	Velo	ocity		
Midpoint					Midpoint				
Between	.,		Poisson's		Between			Poisson's	
Receivers	V _s	Vp	Ratio		Receivers	Vs	V _p	Ratio	
(ft)	(ft/s)	(ft/s)	0.40		(m)	(m/s)	(m/s)	0.40	
167.3	960	5460	0.48		51.0	290	1670	0.48	
169.0	920	5460	0.49		51.5	280	1670	0.49	
170.6	920	5510	0.49		52.0	280	1680	0.49	
172.2	880	5460	0.49		52.5	270	1670	0.49	
173.9	880	5460	0.49		53.0	270	1670	0.49	
175.9	990	5460	0.48		53.6	300	1670	0.48	
177.2	950	5460	0.48		54.0	290	1670	0.48	
178.8	880	5420	0.49		54.5	270	1650	0.49	
180.5	850	5380	0.49		55.0	260	1640	0.49	
182.1	880	5420	0.49		55.5	270	1650	0.49	
183.7	910	5460	0.49		56.0	280	1670	0.49	
185.4	870	5510	0.49		56.5	270	1680	0.49	
187.0	890	5600	0.49		57.0	270	1710	0.49	
188.7	880	5800	0.49		57.5	270	1770	0.49	
190.3	900	6290	0.49		58.0	270	1920	0.49	
191.9	1070	7250	0.49		58.5	330	2210	0.49	
193.6	1380	7580	0.48	K	59.0	420	2310	0.48	
195.2	1420	7750	0.48		59.5	430	2360	0.48	
196.9	1630	8230	0.48		60.0	500	2510	0.48	
198.8	2950	8890	0.44		60.6	900	2710	0.44	
200.5	3880	9390	0.40		61.1	1180	2860	0.40	
201.8	3940	9260	0.39		61.5	1200	2820	0.39	
203.4	4270	9520	0.37		62.0	1300	2900	0.37	
205.1	4190	9520	0.38		62.5	1280	2900	0.38	
206.7	4220	9390	0.37		63.0	1290	2860	0.37	
208.3	3550	8770	0.40		63.5	1080	2670	0.40	
210.0	3140	8550	0.42		64.0	960	2610	0.42	
211.6	3240	9130	0.43		64.5	990	2780	0.43	
213.3	3490	9260	0.42		65.0	1060	2820	0.42	
214.9	3790	8770	0.39		65.5	1150	2670	0.39	
216.5	3700	9260	0.40		66.0	1130	2820	0.40	
218.2	3920	9010	0.38		66.5	1200	2750	0.38	
219.8	4800	9520	0.33		67.0	1460	2900	0.33	
221.5	5560	10420	0.30		67.5	1690	3180	0.30	
223.1	5560	10750	0.32		68.0	1690	3280	0.32	
224.7	5650	10750	0.31		68.5	1720	3280	0.31	
226.4	5900	11110	0.30		69.0	1800	3390	0.30	
228.0	5950	11110	0.30		69.5	1810	3390	0.30	
229.7	5900	11300	0.31		70.0	1800	3440	0.31	
231.3	5950	10930	0.29		70.5	1810	3330	0.29	

Ar	nerican	Units			Metric Units				
Depth at Midpoint Between	Velo	ocity	Poisson's		Depth at Midpoint Between	Velocity		Poisson's	
Receivers	Vs	Vp	Ratio		Receivers	Vs	Vp	Ratio	
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)		
232.9	5800	11110	0.31		71.0	1770	3390	0.31	
234.6	6060	11300	0.30		71.5	1850	3440	0.30	
236.2	5900	11110	0.30		72.0	1800	3390	0.30	
237.9	5090	10930	0.36		72.5	1550	3330	0.36	
239.5	4800	10930	0.38		73.0	1460	3330	0.38	
241.1	4800	10420	0.37		73.5	1460	3180	0.37	
242.8	5050	10580	0.35		74.0	1540	3230	0.35	
244.4	5250	10420	0.33		74.5	1600	3180	0.33	

Notes:

"-" means no data available at that particular interval of depth.

Table 6. Summary of PS	Suspension Data C	uality Evaluation Usin	g Five Criteria

	Oritaria			
	Criteria	IBR-02	IBR-03	IBR-05
1	Consistent data	Yes, consistent data	Yes, consistent data	Yes, consistent data
	between receiver to	between receiver to	between receiver to	between receiver to
	receiver (R1 – R2)	receiver (R1 – R2) and	receiver (R1 – R2) and	receiver (R1 – R2) and
	and source to	source to receiver (S –	source to receiver (S –	source to receiver (S –
	receiver (S – R1)	R1) data. No S _H -wave	R1) data.	R1) data.
	data.	data above 105 ft due to incorrect instrument settings.		
2	Consistency	Yes, good consistency	Yes, good consistency	Yes, good consistency
	between data from	between data from	between data from	between data from
	adjacent depth	adjacent depth intervals.	adjacent depth intervals.	adjacent depth intervals.
	intervals.			
3	Consistent	Yes, consistent	Yes, consistent	Yes, consistent
	relationship between	relationship between P-	relationship between P-	relationship between P-
	P-wave and S _H -	wave and S _H -wave	wave and S _H -wave	wave and S _H -wave
	wave (excluding	profiles. All data is below	profiles. All data is below	profiles. All data is below
	transition to	water table	water table	water table
	saturated soils)			
4	Clarity of P-wave	Yes, clear P-wave and	Yes, clear P-wave and	Yes, clear P-wave and
	and S _H -wave onset,	S _H -wave onsets, good	S _H -wave onsets, good	S _H -wave onsets, good
	as well as damping	damping of later	damping of later	damping of later
	of later oscillations.	oscillations.	oscillations.	oscillations.
5	Consistency of	Yes, similar velocity	Yes, similar velocity	Yes, similar velocity
	profile between	shallow profiles for all	shallow profiles for all	shallow profiles for all
	adjacent borings, if	boreholes, variable at	boreholes, variable at	boreholes, variable at
	available.	depth.	depth.	depth.

APPENDIX A

SUSPENSION VELOCITY MEASUREMENT SOURCE TO RECEIVER ANALYSIS RESULTS

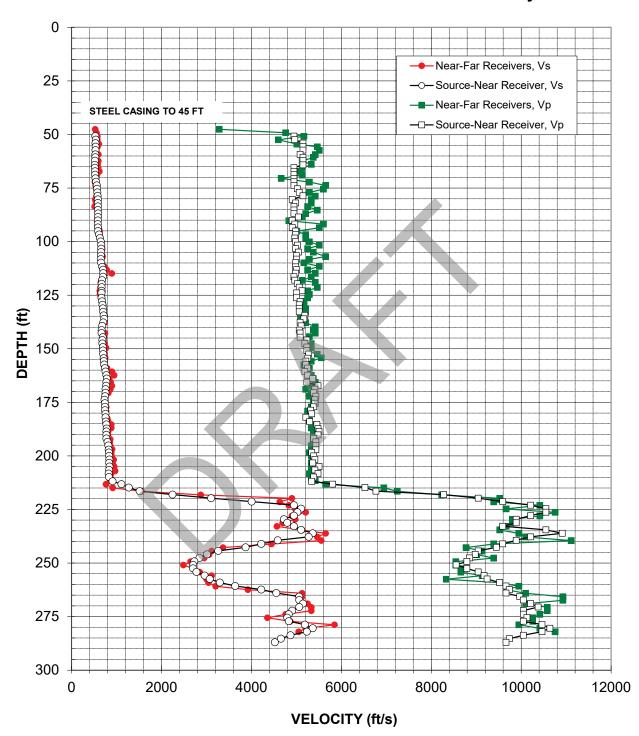
I-5 BRIDGE, VANCOUVER WA, BOREHOLE IBR-02 Source to Receiver and Receiver to Receiver Analysis

Figure A-1: Borehole IBR-02, Suspension S-R1 P- and SH-wave velocities

Table A-1. Borehole IBR-02, S - R1 analysis P- and S_H-wave data

An	American Units			Metric Units				
Depth at Midpoint		ocity			Depth at Midpoint	Velo		
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio		Between Source and Near Receiver	Vs	Vp	Poisson' s Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
77.0	-	5460	-		23.5	-	1660	-
78.7	-	5460	-		24.0	-	1660	-
80.6	-	5500	-		24.6	-	1680	-
81.9	-	5530	-		25.0	-	1690	-
83.9	-	5550	-		25.6	-	1690	-
85.2	-	5430	-		26.0	-	1660	-
87.2	-	5480	-		26.6	-	1670	-
88.5	-	5430	-		27.0	-	1660	-
90.1	-	5480	-	-	27.5	-	1670	-
91.8	-	5550	-		28.0	-	1690	-
93.7	-	5550	-		28.6	-	1690	-
95.1	-	5530	-		29.0	-	1690	-
96.7	-	5600	-		29.5	-	1710	-
98.3	-	5500	-		30.0	-	1680	-
100.0	-	5730	-	K	30.5	-	1750	-
101.6	-	5680	-		31.0	-	1730	-
103.3	-	5830	-		31.5	-	1780	-
104.9	1210	6810	0.48		32.0	370	2070	0.48
106.5	1690	7720	0.47		32.5	510	2350	0.47
108.2	3810	8670	0.38		33.0	1160	2640	0.38
109.8	3980	10210	0.41		33.5	1210	3110	0.41
111.5	3980	10730	0.42		34.0	1210	3270	0.42
113.1	3640	10210	0.43		34.5	1110	3110	0.43
114.7	3620	10050	0.43		35.0	1100	3060	0.43
116.4	3540	9450	0.42		35.5	1080	2880	0.42
118.0	3190	9040	0.43		36.0	970	2760	0.43
119.7	3100	8670	0.43		36.5	950	2640	0.43
121.6	2880	8440	0.43		37.1	880	2570	0.43
122.9	2880	8670	0.44		37.5	880	2640	0.44
124.6	2830	8920	0.44		38.0	860	2720	0.44
126.2	3100	8920	0.43		38.5	950	2720	0.43
127.9	2760	8550	0.44		39.0	840	2610	0.44
129.5	2450	8220	0.45		39.5	750	2510	0.45
131.1	2290	8010	0.46		40.0	700	2440	0.46
133.1	2360	8010	0.45		40.6	720	2440	0.45
134.4	2290	8330	0.46		41.0	700	2540	0.46
136.1	2430	8920	0.46		41.5	740	2720	0.46

	nerican	Units		Metric Units				
Depth at Midpoint	Velo	ocity			Depth at Midpoint	Velo	city	
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio		Between Source and Near Receiver	Vs	Vp	Poisson' s Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
137.7	2670	9170	0.45		42.0	810	2800	0.45
139.3	2490	9170	0.46		42.5	760	2800	0.46
141.0	2470	9170	0.46		43.0	750	2800	0.46
142.6	2430	9040	0.46		43.5	740	2760	0.46
144.3	2330	8790	0.46		44.0	710	2680	0.46
145.9	1980	8670	0.47		44.5	600	2640	0.47
147.6	2330	8440	0.46		45.0	710	2570	0.46
149.2	2340	8790	0.46		45.5	710	2680	0.46
150.8	2340	9040	0.46		46.0	710	2760	0.46
152.5	2420	9040	0.46		46.5	740	2760	0.46
154.1	2690	9170	0.45		47.0	820	2800	0.45
155.8	2380	9240	0.46		47.5	730	2820	0.46
157.4	2210	8790	0.47		48.0	670	2680	0.47
159.0	1980	8550	0.47		48.5	600	2610	0.47
160.7	1840	8010	0.47		49.0	560	2440	0.47
162.3	1680	7190	0.47		49.5	510	2190	0.47
164.0	1550	6960	0.47		50.0	470	2120	0.47
165.6	1470	6590	0.47		50.5	450	2010	0.47
167.2	1440	6590	0.48		51.0	440	2010	0.48
168.9	1500	6730	0.47		51.5	460	2050	0.47
170.5	1540	6590	0.47		52.0	470	2010	0.47
172.2	1590	6590	0.47		52.5	480	2010	0.47
174.1	1620	6730	0.47		53.1	490	2050	0.47
175.4	1670	6730	0.47		53.5	510	2050	0.47
177.1	1680	6880	0.47		54.0	510	2100	0.47
178.7	1730	6960	0.47		54.5	530	2120	0.47
180.7	1730	7030	0.47		55.1	530	2140	0.47
182.0	1730	7190	0.47		55.5	530	2190	0.47
183.6	1730	7360	0.47		56.0	530	2240	0.47
185.3	1800	7540	0.47	1	56.5	550	2300	0.47
186.9	1860	7910	0.47	1	57.0	570	2410	0.47
188.6	1950	7720	0.47	1	57.5	600	2350	0.47
190.2	1950	7540	0.46		58.0	600	2300	0.46
191.8	2080	7450	0.46	1	58.5	630	2270	0.46
193.5	2060	7280	0.46	1	59.0	630	2220	0.46
195.1	1950	7190	0.46	1	59.5	590	2190	0.46
196.8	1880	7030	0.46	1	60.0	570	2140	0.46
198.4	1820	6880	0.46	1	60.5	560	2100	0.46
200.0	1780	6960	0.47	1	61.0	540	2120	0.47
200.0	1100	0000	0.17	U	01.0	0.10	2.20	0.17


An	nerican	Units	
Depth at Midpoint	Velo	ocity	
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio
(ft)	(ft/s)	(ft/s)	
201.7	1790	7190	0.47
203.3	1780	7360	0.47
205.0	1850	7110	0.46
206.6	1980	7280	0.46
208.2	2130	7280	0.45
209.9	2380	7720	0.45
211.5	2510	8120	0.45
213.2	3040	8440	0.43
214.8	3170	8550	0.42
216.4	3070	8790	0.43
218.1	3040	8920	0.43

Ме	tric Unit	S	
Depth at Midpoint	Velo	city	
Between Source and Near Receiver	Vs	Vp	Poisson' s Ratio
(m)	(m/s)	(m/s)	
61.5	550	2190	0.47
62.0	540	2240	0.47
62.5	560	2170	0.46
63.0	600	2220	0.46
63.5	650	2220	0.45
64.0	730	2350	0.45
64.5	770	2470	0.45
65.0	930	2570	0.43
65.5	960	2610	0.42
66.0	940	2680	0.43
66.5	930	2720	0.43

Notes:

"-" means no data available at that particular interval of depth.

I-5 BRIDGE, VANCOUVER WA, BOREHOLE IBR-03 Source to Receiver and Receiver to Receiver Analysis

Figure A-2: Borehole IBR-03, Suspension S-R1 P- and S_H-wave velocities

Table A-2. Borehole IBR-03, S - R1 analysis P- and S_H-wave data

Ame	erican U	nits		Metric Units				
Depth at Midpoint	Vel	ocity			Depth at Midpoint	Velo	ocity	
Between Source			Poisson'		Between Source			Poisson'
and Near Receiver	Vs	Vp	s Ratio		and Near Receiver	Vs	Vp	s Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
50.8	530	4950	0.49		15.5	160	1510	0.49
52.4	540	4960	0.49		16.0	160	1510	0.49
54.0	530	5150	0.49		16.5	160	1570	0.49
55.7	540	5150	0.49		17.0	160	1570	0.49
57.3	530	5150	0.49		17.5	160	1570	0.49
59.3	530	5080	0.49		18.1	160	1550	0.49
60.6	530	5150	0.49		18.5	160	1570	0.49
62.2	520	5150	0.49		19.0	160	1570	0.49
64.2	520	5150	0.49		19.6	160	1570	0.49
65.5	520	4950	0.49		20.0	160	1510	0.49
67.2	520	4950	0.49		20.5	160	1510	0.49
68.8	520	4950	0.49		21.0	160	1510	0.49
70.5	530	4950	0.49		21.5	160	1510	0.49
72.1	540	4950	0.49		22.0	170	1510	0.49
73.7	560	4950	0.49		22.5	170	1510	0.49
75.4	570	5020	0.49		23.0	170	1530	0.49
77.0	570	5060	0.49		23.5	170	1540	0.49
78.7	580	5150	0.49		24.0	180	1570	0.49
80.3	580	4910	0.49		24.5	180	1500	0.49
81.9	580	4980	0.49		25.0	180	1520	0.49
83.6	580	4950	0.49		25.5	180	1510	0.49
85.2	580	4950	0.49		26.0	180	1510	0.49
86.9	590	4950	0.49		26.5	180	1510	0.49
88.5	590	5040	0.49		27.0	180	1540	0.49
90.1	580	4910	0.49		27.5	180	1500	0.49
91.8	580	4960	0.49		28.0	180	1510	0.49
93.4	580	4910	0.49		28.5	180	1500	0.49
95.1	590	4980	0.49		29.0	180	1520	0.49
96.7	610	4980	0.49		29.5	190	1520	0.49
98.3	630	4960	0.49		30.0	190	1510	0.49
100.0	650	4980	0.49		30.5	200	1520	0.49
101.6	660	5020	0.49		31.0	200	1530	0.49
103.3	660	4980	0.49		31.5	200	1520	0.49
104.9	660	5040	0.49		32.0	200	1540	0.49
106.5	650	5000	0.49		32.5	200	1530	0.49
108.2	650	5000	0.49		33.0	200	1530	0.49
109.8	660	4980	0.49		33.5	200	1520	0.49
111.8	680	4980	0.49		34.1	210	1520	0.49
113.1	700	5000	0.49		34.5	210	1530	0.49

Ame	erican U	nits		Ī	Ме	tric Unit	s	
Depth at Midpoint	Vel	ocity			Depth at Midpoint	Velo	ocity	
Between Source			Poisson'		Between Source			Poisson'
and Near Receiver	Vs	Vp	s Ratio		and Near Receiver	Vs	Vp	s Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
114.7	700	4980	0.49		35.0	210	1520	0.49
116.4	700	4950	0.49		35.5	210	1510	0.49
118.0	680	4960	0.49		36.0	210	1510	0.49
119.7	670	5020	0.49		36.5	200	1530	0.49
121.3	670	5060	0.49		37.0	200	1540	0.49
122.9	670	5130	0.49		37.5	200	1560	0.49
123.9	660	5000	0.49		37.8	200	1530	0.49
126.2	660	5000	0.49		38.5	200	1530	0.49
127.9	680	5080	0.49		39.0	210	1550	0.49
129.5	690	5060	0.49		39.5	210	1540	0.49
131.1	700	5060	0.49		40.0	210	1540	0.49
132.8	700	5060	0.49	-	40.5	210	1540	0.49
134.4	710	5190	0.49		41.0	220	1580	0.49
136.1	730	5170	0.49		41.5	220	1580	0.49
137.7	700	5080	0.49		42.0	210	1550	0.49
139.3	680	5100	0.49		42.5	210	1560	0.49
141.3	670	5060	0.49		43.1	200	1540	0.49
142.6	660	5080	0.49		43.5	200	1550	0.49
144.6	690	5080	0.49		44.1	210	1550	0.49
145.9	690	5230	0.49		44.5	210	1590	0.49
147.6	690	5190	0.49		45.0	210	1580	0.49
149.2	700	5230	0.49		45.5	210	1590	0.49
150.8	700	5230	0.49		46.0	210	1590	0.49
152.5	700	5280	0.49		46.5	210	1610	0.49
154.4	710	5250	0.49		47.1	220	1600	0.49
155.8	720	5210	0.49		47.5	220	1590	0.49
157.4	730	5210	0.49		48.0	220	1590	0.49
159.0	740	5250	0.49		48.5	230	1600	0.49
160.7	760	5190	0.49		49.0	230	1580	0.49
162.3	770	5250	0.49		49.5	240	1600	0.49
164.0	780	5360	0.49		50.0	240	1640	0.49
165.6	770	5230	0.49		50.5	240	1590	0.49
167.2	770	5480	0.49		51.0	230	1670	0.49
168.9	760	5410	0.49		51.5	230	1650	0.49
170.5	760	5390	0.49		52.0	230	1640	0.49
172.2	750	5430	0.49		52.5	230	1660	0.49
173.8	730	5410	0.49		53.0	220	1650	0.49
175.4	740	5410	0.49		53.5	230	1650	0.49
177.1	740	5390	0.49		54.0	230	1640	0.49
178.7	740	5320	0.49		54.5	230	1620	0.49

Ame	erican U	nits		Ī	Ме	tric Unit	ts	
Depth at Midpoint	Vel	ocity			Depth at Midpoint	Velo	ocity	
Between Source			Poisson'		Between Source			Poisson'
and Near Receiver	Vs	Vp	s Ratio		and Near Receiver	Vs	Vp	s Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
180.4	760	5340	0.49		55.0	230	1630	0.49
182.0	760	5210	0.49		55.5	230	1590	0.49
184.0	760	5300	0.49		56.1	230	1610	0.49
185.3	770	5460	0.49		56.5	240	1660	0.49
187.2	780	5480	0.49		57.1	240	1670	0.49
188.6	770	5500	0.49		57.5	240	1680	0.49
190.2	770	5480	0.49		58.0	240	1670	0.49
191.8	770	5390	0.49		58.5	240	1640	0.49
193.5	800	5430	0.49		59.0	240	1660	0.49
195.1	820	5430	0.49		59.5	250	1660	0.49
197.1	820	5430	0.49		60.1	250	1660	0.49
198.4	830	5340	0.49	1	60.5	250	1630	0.49
200.0	840	5390	0.49		61.0	250	1640	0.49
201.7	840	5410	0.49		61.5	260	1650	0.49
203.3	840	5360	0.49		62.0	250	1640	0.49
205.0	850	5500	0.49		62.5	260	1680	0.49
206.6	840	5410	0.49		63.0	250	1650	0.49
208.2	830	5480	0.49		63.5	250	1670	0.49
209.9	830	5390	0.49		64.0	250	1640	0.49
211.9	910	5340	0.48		64.6	280	1630	0.48
213.2	1110	5810	0.48		65.0	340	1770	0.48
214.8	1270	6530	0.48		65.5	390	1990	0.48
216.4	1510	6770	0.47		66.0	460	2060	0.47
218.1	2240	8270	0.46		66.5	680	2520	0.46
219.7	3100	9040	0.43		67.0	950	2760	0.43
221.4	4010	9590	0.39		67.5	1220	2920	0.39
223.0	4950	10210	0.35		68.0	1510	3110	0.35
224.7	5100	10550	0.35		68.5	1560	3220	0.35
226.3	5020	10550	0.35		69.0	1530	3220	0.35
227.9	4950	10210	0.35		69.5	1510	3110	0.35
229.6	4720	9890	0.35		70.0	1440	3010	0.35
231.2	4800	9890	0.35		70.5	1460	3010	0.35
232.9	4950	9590	0.32		71.0	1510	2920	0.32
234.5	5100	10550	0.35		71.5	1560	3220	0.35
236.1	5360	10910	0.34		72.0	1640	3330	0.34
237.8	5280	10210	0.32		72.5	1610	3110	0.32
239.4	4590	9890	0.36		73.0	1400	3010	0.36
241.1	4220	9590	0.38		73.5	1290	2920	0.38
242.7	3870	9450	0.40		74.0	1180	2880	0.40
244.3	3260	9040	0.43		74.5	990	2760	0.43

Ame	erican U	nits			Ме	tric Unit	ts
Depth at Midpoint	Vel	ocity			Depth at Midpoint	Velo	ocity
Between Source and Near Receiver	Vs	Vp	Poisson' s Ratio		Between Source and Near Receiver	Vs	V_p
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)
246.0	3010	8980	0.44		75.0	920	2740
247.6	2840	8850	0.44		75.5	870	2700
249.3	2730	8790	0.45		76.0	830	2680
250.9	2710	8550	0.44		76.5	820	2610
252.5	2700	8790	0.45		77.0	820	2680
254.2	2780	9040	0.45		77.5	850	2760
255.8	2960	9170	0.44		78.0	900	2800
257.5	3070	9240	0.44		78.5	940	2820
259.1	3300	9520	0.43		79.0	1000	2900
260.7	3640	9660	0.42		79.5	1110	2950
262.4	4220	9740	0.38		80.0	1290	2970
264.0	4550	9660	0.36	1	80.5	1390	2950
265.7	5060	9970	0.33		81.0	1540	3040
267.3	5060	10050	0.33		81.5	1540	3060
268.9	5150	10210	0.33		82.0	1570	3110
270.6	5060	10380	0.34		82.5	1540	3160
272.2	4910	10050	0.34		83.0	1500	3060
273.9	4830	10050	0.35		83.5	1470	3060
275.5	4800	10130	0.36		84.0	1460	3090
277.1	4830	10050	0.35		84.5	1470	3060
278.8	5190	10460	0.34		85.0	1580	3190
280.4	5360	10640	0.33		85.5	1640	3240
282.1	5230	10460	0.33		86.0	1590	3190
283.7	4870	10050	0.35		86.5	1480	3060
285.3	4650	9740	0.35		87.0	1420	2970
287.0	4520	9660	0.36		87.5	1380	2950

Poisson'

s Ratio

0.44

0.44

0.45

0.44

0.45

0.45

0.44

0.44

0.43

0.42

0.38

0.36

0.33

0.33

0.33

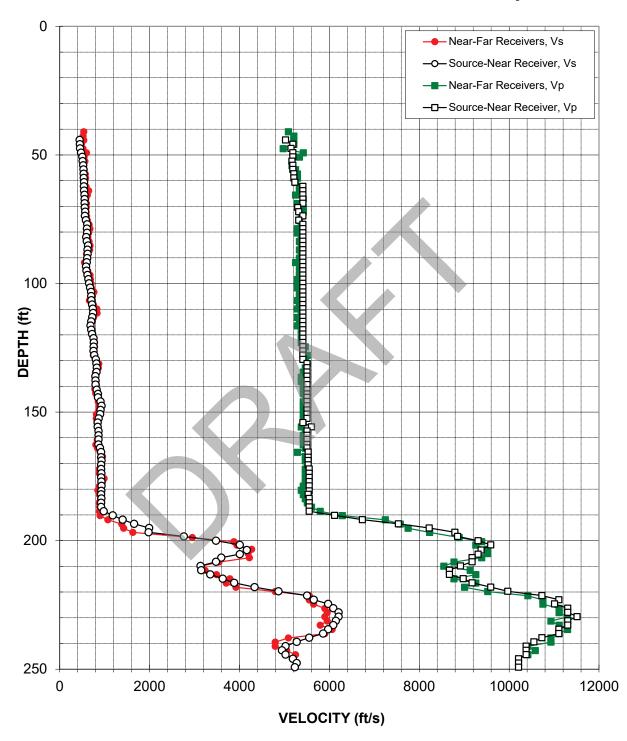
0.34

0.34

0.35

0.36

0.35


0.34 0.33

0.33

0.35

0.35

0.36

I-5 BRIDGE, VANCOUVER WA, BOREHOLE IBR-05 Source to Receiver and Receiver to Receiver Analysis

Figure A-3: Borehole IBR-05, Suspension S-R1 P- and S_H-wave velocities

Table A-3. Borehole IBR-05, S - R1 analysis P- and S_H-wave data

Am	erican U	Inits			Ме	tric Uni	ts	
Depth at Midpoint	Vel	ocity			Depth at Midpoint	Velo	ocity	
Between Source			Poisson'		Between Source			Poisson'
and Near Receiver	Vs	Vp	s Ratio		and Near Receiver	Vs	Vp	s Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
44.2	440	5020	0.50		13.5	140	1530	0.50
45.8	450	5190	0.50		14.0	140	1580	0.50
47.5	450	5150	0.50		14.5	140	1570	0.50
49.1	480	5190	0.50		15.0	150	1580	0.50
50.8	500	5190	0.50		15.5	150	1580	0.50
52.4	510	5170	0.50		16.0	160	1580	0.50
54.0	520	5190	0.49		16.5	160	1580	0.49
55.7	530	5190	0.49		17.0	160	1580	0.49
57.3	530	5210	0.49		17.5	160	1590	0.49
59.0	540	5210	0.49		18.0	160	1590	0.49
60.6	540	5230	0.49		18.5	170	1590	0.49
62.2	540	5410	0.49		19.0	160	1650	0.49
63.9	540	5410	0.49		19.5	170	1650	0.49
65.5	550	5410	0.49		20.0	170	1650	0.49
67.2	560	5410	0.49		20.5	170	1650	0.49
68.8	550	5410	0.49	K	21.0	170	1650	0.49
70.5	560	5300	0.49		21.5	170	1610	0.49
72.1	570	5320	0.49	P	22.0	170	1620	0.49
73.7	560	5410	0.49		22.5	170	1650	0.49
75.4	590	5320	0.49		23.0	180	1620	0.49
77.0	610	5410	0.49		23.5	190	1650	0.49
78.7	610	5410	0.49		24.0	190	1650	0.49
80.3	610	5410	0.49		24.5	190	1650	0.49
81.9	590	5410	0.49		25.0	180	1650	0.49
83.6	600	5410	0.49		25.5	180	1650	0.49
85.2	630	5410	0.49		26.0	190	1650	0.49
86.9	620	5410	0.49		26.5	190	1650	0.49
88.5	620	5410	0.49		27.0	190	1650	0.49
90.1	610	5410	0.49		27.5	190	1650	0.49
91.8	600	5410	0.49		28.0	180	1650	0.49
93.4	590	5410	0.49		28.5	180	1650	0.49
95.1	600	5410	0.49		29.0	180	1650	0.49
96.7	620	5410	0.49		29.5	190	1650	0.49
98.3	640	5410	0.49		30.0	190	1650	0.49
100.0	650	5410	0.49		30.5	200	1650	0.49
101.6	680	5410	0.49		31.0	210	1650	0.49
103.3	700	5410	0.49		31.5	210	1650	0.49
104.9	700	5410	0.49		32.0	210	1650	0.49
106.5	710	5410	0.49		32.5	220	1650	0.49

Am	erican l	Jnits			Ме	tric Uni	ts	
Depth at Midpoint	Ve	locity			Depth at Midpoint	Velo	ocity	
Between Source			Poisson'		Between Source			Poisson'
and Near Receiver	Vs	Vp	s Ratio		and Near Receiver	Vs	Vp	s Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
108.2	720	5410	0.49		33.0	220	1650	0.49
109.8	740	5410	0.49		33.5	230	1650	0.49
111.5	740	5410	0.49		34.0	230	1650	0.49
113.1	730	5410	0.49		34.5	220	1650	0.49
114.7	700	5410	0.49		35.0	210	1650	0.49
116.4	690	5410	0.49		35.5	210	1650	0.49
118.0	700	5410	0.49		36.0	210	1650	0.49
119.7	720	5410	0.49		36.5	220	1650	0.49
121.3	750	5410	0.49		37.0	230	1650	0.49
122.9	760	5410	0.49		37.5	230	1650	0.49
124.6	760	5410	0.49		38.0	230	1650	0.49
126.2	750	5410	0.49		38.5	230	1650	0.49
127.9	770	5410	0.49		39.0	230	1650	0.49
129.5	800	5410	0.49		39.5	250	1650	0.49
131.1	820	5500	0.49		40.0	250	1680	0.49
132.8	830	5500	0.49		40.5	250	1680	0.49
134.4	820	5500	0.49		41.0	250	1680	0.49
136.1	800	5500	0.49		41.5	240	1680	0.49
137.7	800	5500	0.49		42.0	240	1680	0.49
139.3	800	5500	0.49	P.	42.5	240	1680	0.49
141.3	820	5500	0.49		43.1	250	1680	0.49
143.0	850	5500	0.49		43.6	260	1680	0.49
144.3	850	5500	0.49		44.0	260	1680	0.49
145.9	910	5500	0.49		44.5	280	1680	0.49
147.6	930	5500	0.49		45.0	280	1680	0.49
149.2	910	5500	0.49		45.5	280	1680	0.49
150.8	900	5500	0.49		46.0	270	1680	0.49
152.5	870	5500	0.49		46.5	260	1680	0.49
154.1	850	5410	0.49		47.0	260	1650	0.49
155.8	850	5600	0.49		47.5	260	1710	0.49
157.4	860	5500	0.49		48.0	260	1680	0.49
159.0	860	5500	0.49		48.5	260	1680	0.49
160.7	860	5500	0.49		49.0	260	1680	0.49
162.6	860	5500	0.49		49.6	260	1680	0.49
164.0	900	5500	0.49		50.0	270	1680	0.49
165.6	920	5530	0.49		50.5	280	1690	0.49
167.6	920	5530	0.49		51.1	280	1690	0.49
168.9	930	5530	0.49		51.5	280	1690	0.49
170.5	920	5530	0.49		52.0	280	1690	0.49
172.2	920	5550	0.49		52.5	280	1690	0.49

Am	erican L	Jnits			Ме	tric Unit	ts	
Depth at Midpoint	Ve	locity			Depth at Midpoint	Velo	city	
Between Source			Poisson'		Between Source			Poisson'
and Near Receiver	Vs	Vp	s Ratio		and Near Receiver	Vs	Vp	s Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
173.8	930	5550	0.49		53.0	280	1690	0.49
175.4	920	5550	0.49		53.5	280	1690	0.49
177.1	930	5550	0.49		54.0	280	1690	0.49
178.7	930	5550	0.49		54.5	280	1690	0.49
180.7	930	5550	0.49		55.1	280	1690	0.49
182.0	920	5530	0.49		55.5	280	1690	0.49
183.6	930	5550	0.49		56.0	280	1690	0.49
185.3	920	5550	0.49		56.5	280	1690	0.49
186.9	920	5550	0.49		57.0	280	1690	0.49
188.6	980	5550	0.48		57.5	300	1690	0.48
190.2	1180	6120	0.48		58.0	360	1860	0.48
191.8	1400	6730	0.48		58.5	430	2050	0.48
193.5	1660	7540	0.47		59.0	510	2300	0.47
195.1	1990	8220	0.47		59.5	610	2510	0.47
196.8	1980	8790	0.47		60.0	600	2680	0.47
198.4	2760	8850	0.45		60.5	840	2700	0.45
200.0	3480	9310	0.42		61.0	1060	2840	0.42
201.7	4010	9590	0.39		61.5	1220	2920	0.39
203.7	4160	9380	0.38		62.1	1270	2860	0.38
205.3	4010	9310	0.39	P.	62.6	1220	2840	0.39
206.6	3600	9170	0.41		63.0	1100	2800	0.41
208.2	3480	9170	0.42		63.5	1060	2800	0.42
209.9	3130	8920	0.43		64.0	960	2720	0.43
211.5	3150	8670	0.42		64.5	960	2640	0.42
213.2	3350	8670	0.41		65.0	1020	2640	0.41
214.8	3630	8980	0.40		65.5	1110	2740	0.40
216.4	3880	9170	0.39		66.0	1180	2800	0.39
218.1	4340	9590	0.37		66.5	1320	2920	0.37
219.7	4870	9970	0.34		67.0	1480	3040	0.34
221.4	5500	10730	0.32		67.5	1680	3270	0.32
223.0	5650	11110	0.33		68.0	1720	3380	0.33
224.7	5970	11010	0.29		68.5	1820	3360	0.29
226.3	6090	11300	0.30		69.0	1860	3450	0.30
227.9	6210	11300	0.28		69.5	1890	3450	0.28
229.6	6210	11510	0.30		70.0	1890	3510	0.30
231.2	6150	11300	0.29		70.5	1870	3450	0.29
232.9	6090	11300	0.30		71.0	1860	3450	0.30
234.5	5970	11110	0.30		71.5	1820	3380	0.30
236.1	5860	11110	0.31		72.0	1790	3380	0.31
237.8	5550	10730	0.32		72.5	1690	3270	0.32

Am	American Units									
Depth at Midpoint	Ve	ocity								
Between Source and Near Receiver	Vs	Vp	Poisson' s Ratio							
(ft)	(ft/s)	(ft/s)								
239.4	5280	10550	0.33							
241.1	5020	10380	0.35							
242.7	4950	10380	0.35							
244.3	5020	10380	0.35							
246.0	5190	10210	0.33							
247.6	5280	10210	0.32							
249.3	5230	10210	0.32							

Ме	tric Unit	ts	
Depth at Midpoint	Velo	city	
Between Source and Near Receiver	Vs	V_p	Poisson' s Ratio
(m)	(m/s)	(m/s)	
73.0	1610	3220	0.33
73.5	1530	3160	0.35
74.0	1510	3160	0.35
74.5	1530	3160	0.35
75.0	1580	3110	0.33
75.5	1610	3110	0.32
76.0	1590	3110	0.32

APPENDIX B

BORING GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE CALIBRATION RECORDS

MICRO PRECISION CALIBRATION, INC 2165 N. Glassell St., Orange, CA 92865 714-901-5659

Certificate of Calibration

Cert No. 5523631030212482

Date: Jul 19, 2023 **Customer: GEOVISION** 1124 OLYMPIC DR. **CORONA CA 92881**

CORDINA CA 920	001		
		Work Order #:	LA-90060016
		Purchase Order #:	23230-230629-02
MPC Control #:	AM6767	Serial Number:	160023
Asset ID:	160023	Department:	N/A
Gage Type:	LOGGER	Performed By:	JOSE ACEVES
Manufacturer:	ΟΥΟ	Received Condition:	IN TOLERANCE
Model Number:	3403	Returned Condition:	IN TOLERANCE
Size:	N/A	Cal. Date:	July 11, 2023
Temp/RH:	22.2°C / 34.9%	Cal. Interval:	12 MONTHS
Location:	Calibration performed at MPC facility	Cal. Due Date:	July 11, 2024
Calibration Not	28.		

Calibration Notes:

This certificate supersedes certificate numbers 5523631030211232 and 5523631030211964 due to correction of clerical issues.

See attached data sheet for calculations (1 Page). Calibrated IAW customer supplied data form Rev 2.1 Frequency measurement uncertainty = 0.0005 Hz Unit calibrated with the following Laptop: Panasonic CF-31 Serial number: 3HTYB54089 Calibrated To >4:1 TUR Calibration performed in accordance with approved GEOVision procedure Rev 2.1

Standards Used to Calibrate Equipment

I.D.	Description.	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
DB8748	GPS TIME AND FREQUENCY RECEIVER	58503A	3625A01225	HEWLETT PACKARD	Apr 30, 2025	552363103004224 5
LAS0052	Waveform Generator	33250A	MY40029031	AGILENT	Oct 31, 2023	551220085839149
LAS0033	UNIVERSAL COUNTER	53131A	3546A14968	HEWLETT PACKARD	May 31, 2024	552363103004796 4

Calibrating Technician:

JOSE ACEVES

QC Approval:

Jeya Veks

March 12, 2024

II YA VAKS

STATEMENTS OF PASS OR FAIL CONFORMANCE: The uncertainty of measurement has been taken into account when determining compliance with specification. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006.

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This calibration report complies with ISO/IEC 17025:2017, ANSI/NCSL 2540.3-2006 and ANSI/NCSL 2540.1-1994. Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. All standards are traceable to SI through the National Institute of Standards and Technology (NIST) and/or recognized national or intermational standards laboratories. Services rendered include proger manufacturer's service instruction and are warranted for no less than thirty (30) days. The information on this report pertains only to the instrument identified, this may not be reproduced in part or in a whole without the prior written approval of the issuing MP Calibration Laboratory.

THE CALIBRATION REPORT STATUS: PASS - Term used when compliance statement is given, and the measurement result is PASS. PASS - Term used when compliance statement is given, and the measurement result is conditional passed or PASS². FAIL - Term used when compliance statement is given, and the measurement result is FAIL. FAIL² - Term used when compliance statement is given, and the measurement result is factor. ADL/STED - Term used when reported measurement requiring compliance statement in report. ADJUSTED: When adjustments are made to an instrument which changes the value of measurement from what was measured as found to new value as left. LIMITED - When an instrument fails calibration but is still functional in a limited manner.

MICRO PRECISION CALIBRATION, INC 2165 N. Glassell St., Orange, CA 92865 714-901-5659

Certificate of Calibration

Cert No. 5523631030212482

Date: Jul 19, 2023 Procedures Used in this Event

> **Procedure Name GEOVISION SEISMIC Rev. 2.1**

Description Seismic Logger/Recorder Calibration Procedure, Rev. 2.1

Calibrating Technician:

JOSE ACEVES

QC Approval:

Jeya Velks

ILYA VAKS

STATEMENTS OF PASS OR FAIL CONFORMANCE: The uncertainty of measurement has been taken into account when determining compliance with specification. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006.

THE CALIBRATION REPORT STATUS: PASS - Term used when compliance statement is given, and the measurement result is PASS. PASS - Term used when compliance statement is given, and the measurement result is conditional passed or PASS². FAIL - Term used when compliance statement is given, and the measurement result is FAIL. FAIL² - Term used when compliance statement is given, and the measurement result is factor. ADL/STED - Term used when reported measurement requiring compliance statement in report. ADJUSTED: When adjustments are made to an instrument which changes the value of measurement from what was measured as found to new value as left. LIMITED - When an instrument fails calibration but is still functional in a limited manner.

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This calibration report complies with ISO/IEC 17025:2017, ANSI/NCSL 2540.3-2006 and ANSI/NCSL 2540.1-1994. Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. All standards are traceable to SI through the National Institute of Standards and Technology (NIST) and/or recognized national or intermational standards laboratories. Services rendered include proger manufacturer's service instruction and are warranted for no less than thirty (30) days. The information on this report pertains only to the instrument identified, this may not be reproduced in part or in a whole without the prior written approval of the issuing MP Calibration Laboratory.

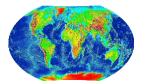
SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMENT DATA System mfg.:	Оуо		Model no.:	3403	
Serial no.:	160023		Calibration date:	7/11/2023	
By:	Micro Precision		Due date:	7/11/2024	
Counter mfg.:	Hewlett-Packard		Model no.:	34401A	
Serial no.:	3546A14968		Calibration date:	5/9/2023	
By:	Micro Precision		Due date:	5/9/2024	
Signal generator mfg.:	Agilent		Model no.:	33250A	
Serial no.:	MY40029031		Calibration date:	10/24/22	
By:	Microprecision		Due date:	10/31/23	
Laptop controller mfg.:	Panasonic		Model no.:	Toughbook CF-31	
Serial no.:	3HTYB54089		Calibration date:	N/A	
SYSTEM SETTINGS:					
Gain:		2			
Filter		10KHz			
Range:		See sam	ple period in table belo	W	
Delay:		0			
Stack (1 std)		1			
System date = correct d	ate and time	7-11-23	8:26am		

PROCEDURE:

Set sine wave frequency to target frequency with amplitude of approximately 0.25 volt peak Note actual frequency on data form.

Set sample period and record data file to disk. Note file name on data form.


Pick duration of 9 cycles using PSLOG.EXE program, note duration on data form, and save as .sps file. Calculate average frequency for each channel pair and note on data form.

Average frequency must be within +/- 1% of actual frequency at all data points.

Maximum erro	r ((AVG-AC	T)/ACT*10	0)%	As found	22	+ 0.22%	- -	As left	+ 0.22%	
Target Frequency (Hz)	Actual Frequency (Hz)	Sample Period (microS)	File Name	Time for 9 cycles Hn (msec)	Average Frequency Hn (Hz)	Time for 9 cycles Hr (msec)	Average Frequency Hr (Hz)	Time for 9 cycles V (msec)	Average Frequency V (Hz)	
50.00	50.00	200	101	179.6	50.11	180.0		180.2	49.94	
100.0	100.0	100	102	90.00	100.0	90.10		90.00	100.0	
200.0	200.0	50	103	45.00	200.0	45.00	200.0	45.05	199.8	
500.0	500.0	20	104	17.98	500.6	18.00	500.0	18.00	500.0	
1000	1000	10	105		1000	9.000	1000.0	9.010	998.9	
2000	2000	5	106		2002	4.505	1998	4.495	2002	
Calibrated by:		hame	9	Jor	Acecet	7/11/2023 Date		Signature	a	
Witnessed by		Emil	1			7/11/2023 Date	Signature			
S	uspension P	S Seismic	Recorde	er/Logger Ca	alibration Da	ata Form R	Rev 2.1 Fe	bruary 7, 2012		

GEOVision Report 24016-01 Port Interstate Bridge Borehole Geophysics Rev 0

March 12, 2024

Global Geophysics P. O. Box 2229 Redmond, WA, 98073-2229 Tel: 425-890-4321 Fax: 206-582-0838

January 31, 2024

Our Ref.: 114-0108.000

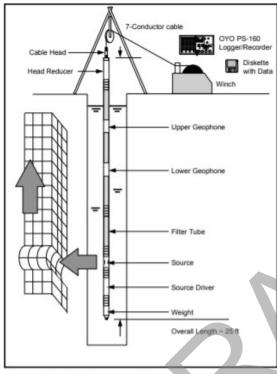
Shannon & Wilson, Inc. 3990 Collins Way, Suite 100 Lake Oswego, OR 97035

Attention: Cody Sorensen

RE: REPORT ON THE SUSPENSION LOGGING FOR 15 COLUMBIA RIVER BRIDGE, PORTPLAND, OREGON

Dear Mr. Sorensen:

Global Geophysics conducted borehole suspension logging in borehole IBR-07 at I5 Columbia River Bridge on January 8, 2024. The objective of the geophysical investigation was to determine shear and compressional wave velocities.


METHODOLOGY AND INSTRUMENTATION

Suspension Logging

Soil velocity measurements were obtained using a suspension PS logging system, manufactured by OYO Corporation, and their subsidiary, Robertson Geologging. Data obtained with this system was used to calculate the average velocity of the soil column surrounding the boring by measuring the elapsed time of a wave propagating upward through the soil column from the transmitter to the receivers over a distance of 3.3 feet. The receivers that detect the wave, and the source that generates the wave, are moved as a unit down the boring at fixed intervals producing relatively constant amplitude signals at each depth where measurements are obtained.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shear wave source (SH) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder. The separation of the two receivers is 3.28 feet, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in these surveys is 21 feet. The probe receives control signals from, and sends the receiver signals to, instrumentation on the surface via an armored 4-conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 1.3-foot circumference sheave fitted with a digital rotary encoder. The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the

source. This pressure wave is converted to P and SH-waves in the surrounding soil and rock as it passes through the casing and grout annulus and impinges upon the wall of the boring. These waves propagate through the soil and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location.

Oyo PS Suspension Logger Setup

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

1. The source is fired in one direction producing dominantly horizontal shear with some

vertical compression, and the signals from the horizontal receivers situated parallel to the

axis of motion of the source are recorded. 2. The source is fired again in the opposite direction and the horizontal receiver signals are

recorded.

3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and SH-wave arrivals; reversal of the source changes the polarity of the SH-wave pattern but not the P-wave pattern.

QUALITY ASSESMENT ON SITE

The data quality was carefully monitored during acquisition. Polarity reversal for shear wave and strong s-wave data must be observed and confirmed. An example data is shown below.

a land birt and the	yus		
STATE OF STREET			
	foresting and	11 P	
		10 K.	
- 10 100 150		TAN AND ALL IN .	+ +
		4. C	
			1 5
		- C+	
		ri nan	
		n n nnw 📖	
9		2100	
Line I want I want	Charlen II -	(8)	
ATTINUES AND A	111	and Carlo ten	
101100.000.00 001100.000.00 011100.000.0		na cancina 🏪	
2110/000			
8-14 (ma) 8-14 (ma) 8-14 (ma)	10 19		

RESULTS

Table 1: The s-wave and p-wave velocities from IBR-07

The depth was referred to the top of the mudtub. Bottom of the casing was at 73.5 ft. Mudline was at approximate 43 ft.

Depth from top of the mudtub (ft)	Dpeth from mudline (ft)	S-wave velocity (ft/s)	P-wave velocity (ft/s)	Note
78.7	35.7	912	5128	Good data
82.0	39.0	746	5128	
85.3	42.3		5469	Poor s-wave data
88.6	45.6		5469	roor s-wave data
91.9	48.9	1460	5292	
95.1	52.1	1398	7133	
98.4	55.4	2116	7457	
102.0	59.0	3281	8412	
105.0	62.0	3455	8868	
108.3	65.3	2982	8202	
111.5	68.5	3550	8635	
114.8	71.8	4688	9941	
118.4	75.4	4101	9373	
121.4	78.4	4688	9941	
124.7	81.7	4688	10253	
128.3	85.3	2982	7133	Good data
131.2	88.2	1901	5965	
134.5	91.5	3752	8868	
137.8	94.8	4373	9373	
141.1	98.1	4688	9941	
144.4	101.4	3752	8635	
147.6	104.6	3645	8868	
150.6	107.6	3656	8635	
154.5	111.5	4531	9373	
157.8	114.8	4531	9649	
160.8	117.8	5469	9649	
162.1	119.1	5965	10584	

Figure 1: IBR-07 S-wave and P-wave velocity vs depth plot

LIMITATIONS OF THE GEOPHYSICAL METHODS

Global geophysics services are conducted in a manner consistent with the level of care and skill ordinarily exercised by other members of the geophysical community currently practicing under similar conditions subject to the time limits and financial and physical constraints applicable to the services. Suspension logging is a remote sensing geophysical method that may not detect all subsurface layer changes.

CLOSURE

I trust that this report will meet your immediate requirements. Please contact me if you have any questions or concerns regarding this report or my services.

Sincerely,

Global Geophysics

John Liu, Ph.D., R.G. Principal Geophysicist

APPENDIX D. COLUMBIA RIVER LABORATORY TEST RESULTS TABLE OF CONTENTS

1.	GENERAL	 D-1
2.	SOIL TESTING	 D-1
2.1	Moisture (Natural Water) Content	 D-1
2.2	Atterberg Limits	 D-1
2.3	Particle-Size Analyses	 D-2
	2.3.1 Rotosonic Core Samples	 D-2
2.4	Corrosivity Testing	 D-2

ATTACHMENTS

Atterberg Limits Summary Grain Size Analysis Summaries Corrosivity Potential Test Results

1. GENERAL

The soil samples obtained during the field explorations were described and identified in the field in accordance with the WSDOT Geotechnical Design Manual (2022). The samples were then reviewed in Shannon & Wilson's laboratory. Physical characteristics of the samples were noted, and field descriptions and identifications were modified as necessary. During examination, select samples were chosen for further testing. We refined our descriptions and identifications based on the results of the laboratory tests, in accordance with the WSDOT Geotechnical Design Manual (2022) and ASTM D2487, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).

The soil testing program included moisture content analyses, Atterberg limits determinations, particle-size analyses, and corrosivity testing. Testing was performed by Shannon & Wilson, GeoTesting Express (GTX) of Acton, MA, and TEi – Testing Services of Salt Lake City, UT, subcontracted through GeoTesting Express. All testing was completed in general accordance with applicable ASTM International standards. General descriptions of the tests are summarized in the following paragraphs. Laboratory test results from the two borings drilled in North Portland Harbor are presented separately in Appendix E.

2. SOIL TESTING

2.1 Moisture (Natural Water) Content

Natural moisture content analyses were performed in general accordance with ASTM D2216 on selected soil samples. The natural moisture content is a measure of the relative amount of moisture in the soil at the time the explorations are performed and is defined as the ratio of water weight to dry soil weight, expressed as a percentage. Results of the moisture content analyses are presented on the boring logs in Appendix A.

2.2 Atterberg Limits

Atterberg limits were determined on selected samples in general accordance with ASTM D4318. This analysis yields index parameters of the soil that are useful in soil identification, as well as in a number of analyses, including liquefaction analysis. An Atterberg limits test determines a soil's liquid limit (LL) and plastic limit (PL). These are the maximum and minimum moisture contents at which the soil exhibits plastic behavior. A soil's plasticity index (PI) can be determined by subtracting PL from LL. The WSDOT Geotechnical Design Manual (2022) does not define terms to describe the plasticity of soils. For the purposes of soil description, the terms defined in the ODOT Geotechnical Design Manual (2023) were also applied to the Columbia River boring descriptions. ODOT uses the term nonplastic to refer to soils with a PI of 0 to 3, low plasticity for soils with a PI range of 3 to 15, medium plasticity for

soils with a PI range of 15 to 30, and high plasticity for soils with a PI greater than 30. Results of Atterberg limits tests are presented in the Atterberg Limits Summary attached to this appendix.

2.3 Particle-Size Analyses

Particle-size analyses were conducted on selected samples to determine their grain-size distributions. Grain size distributions were determined in general accordance with ASTM D6913, D422, and D1140, as applicable. For select samples, a wet sieve analysis was performed to determine the percentage (by weight) of each sample passing the No. 200 (0.075 mm) sieve. For a subset of these samples, the material retained on the No. 200 sieve was shaken through a series of sieves to determine the distribution of the plus No. 200 fraction (ASTM D6913/D422). For some samples, only the percentage of the sample passing the No. 200 (0.075 mm) sieve was determined (ASTM D1140). For all particle-size analyses, the percentage of material passing the No. 200 sieve is presented on the boring logs in Appendix A. More complete results of particle size analyses performed on samples from the Columbia River borings are presented in the Grain Size Analysis Summaries attached to this appendix.

2.3.1 Rotosonic Core Samples

As discussed in the report, the grain size distribution curves included in the laboratory test results may include particles that were mechanically fractured, cut, or pulverized during drilling, suggesting increased fines content or smaller particle sizes than are present in the in situ material.

Where cobble-sized particles were retained on the 3-inch sieve, two grain size distribution plots are provided for the tested specimen: one that includes the mass of the material retained on the 3-inch sieve and one based on the mass of the material that passes through the 3-inch sieve. Soil names are based on the portion of the material that passes through the 3-inch sieve, in accordance with ASTM D2487, and "with cobbles" is added to the end of the soil name.

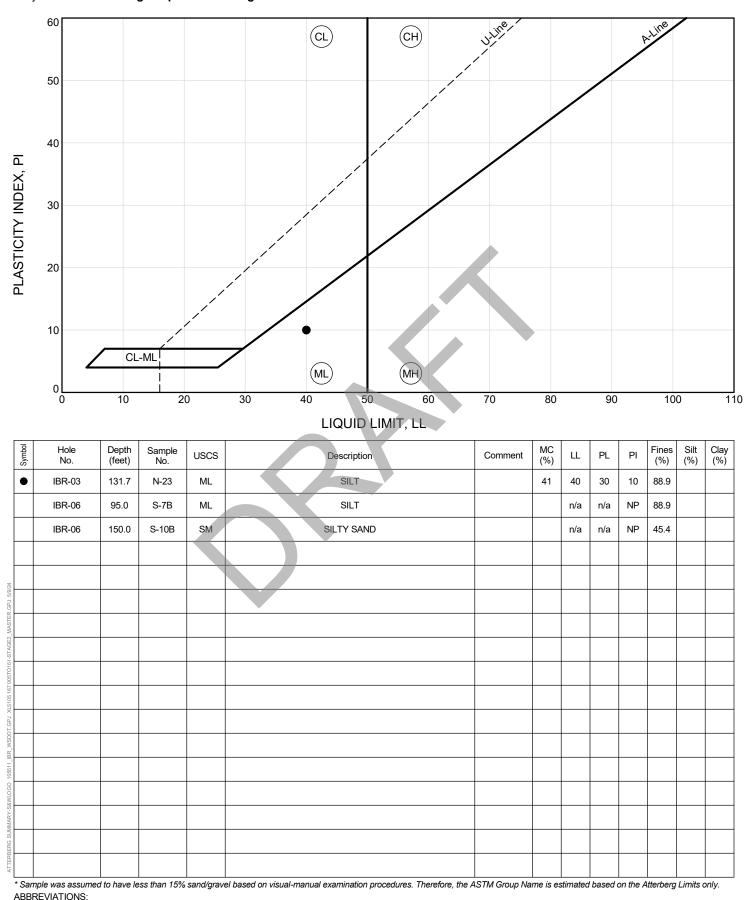
2.4 Corrosivity Testing

Analytical corrosivity testing was performed on selected soil samples from to evaluate the corrosivity potential of the soil. The corrosivity test suite included resistivity, chloride concentration, soil pH, sulfide concentration, and sulfate concentration. Analytical testing was performed by GeoTesting Express of Acton, Massachusetts and by TEi – Testing Services of Salt Lake City, Utah subcontracted through GeoTesting Express. The analytical testing reports and results are attached to the end of this appendix.

The corrosion potential of a soil is primarily evaluated by comparing measured pH, resistivity, and sulfate and chloride concentrations to the values specified in Section 10.7.5 of the AASHTO LFRD Bridge Design Specifications (9th Edition, 2020).

Soil pH is a measurement of the hydrogen ion activity of the soil. Soil pH is reported in Standard Units (S.U.) on a scale ranging from 0 to 14, with 7 being neutral. Soils with a pH less than 7 are considered acidic, and soils with a pH greater than 7 are considered alkaline. According to the AASHTO

Geotechnical Data Report

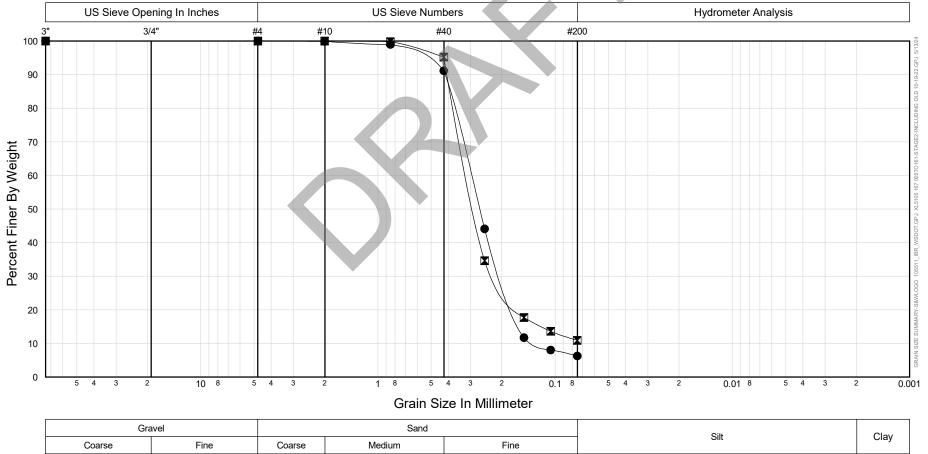


specifications, soils with a pH less than 5.5 and soils with a pH between 5.5 and 8.5 that also have high organic content are considered potentially corrosive.

Resistivity (expressed as ohms-centimeter or ohms-cm) is the numerical expression of the ability of a soil to impede the transmission of an electrical current. Resistivity is the inverse of conductivity and is dependent on the presence of ions, their concentrations, mobility, and valence, as well as soil moisture and temperature. The AASHTO specifications state that effects of corrosion and deterioration shall be considered if resistivity values are less than 2,000 ohms-cm.

Sulfate and chloride concentrations were also measured. Sulfates can be converted to sulfides by naturally occurring bacteria. Sulfides, when allowed to oxidize, will produce sulfuric acid, which is highly corrosive. Chlorides will also chemically react and facilitate dissolution reactions with metals and concrete. According to the AASHTO specifications, the soil is considered corrosive if the concentration of sulfate or chloride is greater than 1,000 parts per million.

LL = liquid limit; MC = moisture content; n/a = test attempted; NP = nonplastic; PI = plasticity index; PL = plastic limit; USCS = Unified Soil Classification System code USCS codes listed on graph: CL = lean clay; CH = fat clay; ML = silt; MH = elastic silt; CL-ML = silty clay


Sheet 1 of 2

Job No: Y-12435 Project: Interstate Bridge Replacement Program

Symbol	Depth	Sample	USCS		Description		Test M	AC LL	PL	PI	Moist Density	Specific	Gravel		Fines	C _c	Cu	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀	D ₃₀ (mm)	D ₂₀	D ₁₀
	(feet)	No.			•			70)		FI	(lbs/ft ³)	Gravity	(%)	(%)	(%)								(mm)
	15.9	N-4B	SP-SM*			3-13-24 1	17	_				36.6	56.3	7.1	0.9	25				0.753			
	31.2	N-7	SP-SM*	POORLY GRA	ADED SAND with SILT*	3	3-13-24 2	26					1.7	92.7	5.7	1.0	2				0.215	0.178	0.136
	36.2	N-8	SM*	SILTY SAND with GRAVEL*		3	3-13-24 3	37					15.6	54.5	29.9			11.157	0.163	0.132	0.075		
*	56.3	N-11	SP-SM*	POORLY GRADED SAND with SILT*		3-13-24 3	33					0.5	92.0	7.6	1.4	3	0.674	0.332	0.297	0.224	0.175	0.109	
•	76.9	N-15	SP*	POORLY GRADED SAND*		3	3-13-24 3	34					0.0	95.3	4.8	1.0	2	0.401	0.282	0.250	0.192	0.168	0.137
0	102.1	N-20	SP-SM*	POORLY GRA	ADED SAND with SILT*	3	3-13-24 3	32			\wedge		0.0	92.9	7.1	1.1	2	0.388	0.276	0.246	0.187	0.163	0.112
0	131.7	N-23	ML*	SILT*			3-13-24 4	41 40	30	10			0.0	11.1	88.9			0.080					
*Sar	nple was	assumed to	be non-pla	stic based on visual-manual e	xamination procedures. Th	herefore, the AS	TM Group N	Vame is es	timated b	ased on	the grain size d	listribution	only.										
			US Siev	e Opening In Inches			Sieve Nu								Hydro	omete	r Ana	lysis					
	100	3"	•	3/4"	#4 #10)		#40	-		#200											100	4
										-0-	Q											501 5/4	5
	90																					0-10-22	
	80				A A																	100	
	00							\mathbb{N}															2
	번 ⁷⁰									\												TAGE 2.1	
	/eig																					TO 161-S	2
	≥ ⁶⁰																					5 167 005	2
	ш ъ ⁵⁰								\ �													1 XI 610	
	ц Ц								\mathbb{N}													SDOT GP	5
	⁴⁰								¥ /													AN AR	
	Percent Finer By Weight																					105641	
									\mathbb{N}	\mathbb{N}												SAMI OGC	
	20									Ŵ												AMA RV-S	
	10)																				UTF SLIP	
										- (GRAIN	5
	0	5	4 3	2 10 8	5 4 3 2	1	8 5	5 4	3 2		0.1 8	54	3	2		0.01	8	5 4	4 3	2		0.00	1
							Grain	Size Ir	Millin	neter													
				Gravel			Sand								Si						Clay		

Symbol	Depth (feet)	Sample No.	USCS	Description	Test Date	MC (%)	LL	PL	PI	Moist Density (lbs/ft ³)	Specific Gravity		Sand (%)	Fines (%)	C _c	C _u	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀ (mm)	D ₃₀ (mm)	D ₂₀ (mm)	D ₁₀ (mm)
•	152.0	N-25	SP-SM*	POORLY GRADED SAND with SILT*	3-13-24	27						0.0	93.7	6.3	1.1	2	0.420	0.299	0.267	0.200	0.171	0.128
	192.7	N-29	SP-SM*	POORLY GRADED SAND with SILT*	3-13-24	36						0.0	89.1	10.9	2.3	5	0.406	0.312	0.286	0.218	0.161	
									4	\wedge												

*Sample was assumed to be non-plastic based on visual-manual examination procedures. Therefore, the ASTM Group Name is estimated based on the grain size distribution only.

Symbol	Depth (feet)	Sample No.	USCS	De	escription		Test Date	MC (%)	LL	PL	PI	Moist Density (lbs/ft ³)	Specific Gravity	Gravel (%)	Sand (%)	Fines (%)	C _c	C _u	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀ (mm)	D ₃₀ (mm)	D ₂₀ (mm)	D ₁ (mn
•	5.0	S-1	SP*	POORLY	GRADED SAND*		1-2-24							0.0	98.3	1.7	0.9	2	0.406	0.296	0.266	0.205	0.178	0.1
	23.0	S-3A	SP*	POORLY	GRADED SAND*		1-2-24							0.0	96.5	3.5	1.0	2	0.412	0.276	0.242	0.188	0.165	0.13
	28.0	S-3B	SM*	SIL	TY SAND*		1-2-24							0.0	84.0	16.0			0.991	0.422	0.335	0.188	0.111	
*	41.0	S-5	SP-SM*	POORLY GRA	DED SAND with SILT	*	1-2-24							0.0	93.7	6.3	1.1	2	0.631	0.330	0.296	0.229	0.185	0.14
•	53.0	S-6B	SP*	POORLY	GRADED SAND*		1-2-24							0.0	97.5	2.6	1.0	2	0.412	0.314	0.286	0.229	0.192	0.16
¢	64.0	S-7B	SP-SM*	POORLY GRA	DED SAND with SILT	*	1-3-24							0.0	94.8	5.2	1.0	2	0.411	0.297	0.266	0.201	0.172	0.1
0	81.0	S-9A	SP*	POORLY	GRADED SAND*		1-3-24							0.0	96.7	3.3	0.9	2	0.416	0.277	0.242	0.190	0.168	0.14
Sar	mple was	assumed to	be non-pla	stic based on visual-manual ex	amination procedures.	Therefore, the J	ASTM Grou	p Name	is estin	nated ba	ised on	the grain size d	istribution	only.										
			US Siev	e Opening In Inches		U	S Sieve I	Numbe	ers							Hydro	ometei	r Anal	ysis					
	100	3"		3/4"	#4 #	10	<u> </u>	#40)			#200											**	
	Dercent Finer By Weight			2 10 8			8	5 4	3	2		0.1 8	5 4	3	2		0.01	8	5 4	4 3	2		GEVIN SEZE SUMMARY-SAMOGOO 10551 TIBE, WSDOT GPJ X15105 147 00510 141-5 TAGE2-INCLUDING OLD 10- GEVIN SEZE SUMMARY-SAMOGOO 10551 TIBE, WSDOT GPJ X15105 147 00510 141-5 TAGE2-INCLUDING OLD 10- 10-1000 141-5 TAGE2-INCLUDING OLD 10-1000 141-5 TAGE2-INCLUDING OLD 10- 10-1000 141-5 TAGE2-INCLUDING 010-10-1000 141-5 TAGE2-INCLUDING OLD 10-10- 10-1000 141-5 TAGE2-INCLUDING 010-10-1000 141-5 TAGE2-INCLUDING 010-10-10-1000 141-5 TAGE2-INCLUDING 010-10-10- 10-1000 141-5 TAGE2-INCLUDING 010-10-10-10-10-10-10-10-10-10-10-10-10-	
							Grai	n Sizo	e In I	Millim	eter													
				Gravel			Sar	nd														0		
			Coarse	Fine	Coarse	Me	edium			F	ine					Si	t					Clay	'	

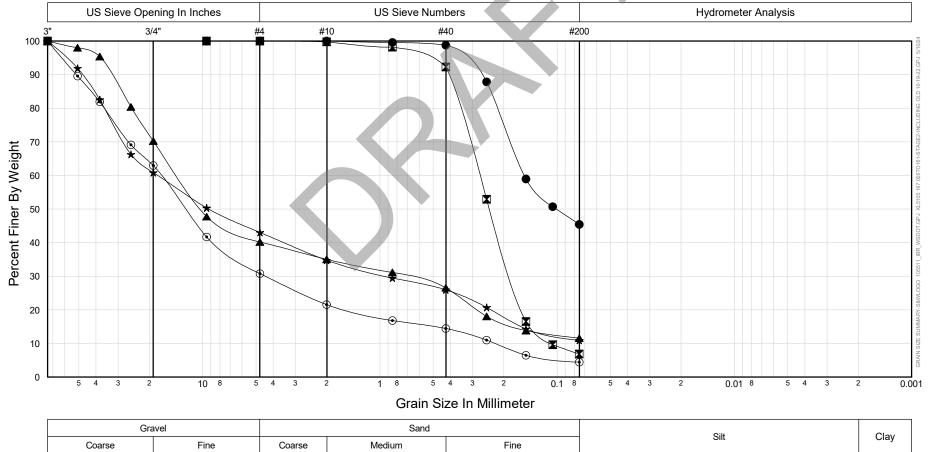
			U																				
Symbol	Depth (feet)	Sample No.	USCS	Descri	otion	Test Date	MC (%)	LL	PL	PI	Moist Density (lbs/ft ³)	Specific Gravity	Gravel (%)	Sand (%)	Fines (%)	C _c	Cu	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀ (mm)	D ₃₀ (mm)	D ₂₀ (mm)	D ₁₀ (mn
•	106.0	S-10	SP*	POORLY GRA	DED SAND*	1-3-24							0.0	96.5	3.5	1.0	2	0.370	0.230	0.210	0.175	0.160	0.12
	122.0	S-12A	SM*	SILTY S	AND*	1-3-24							0.0	86.3	13.7			0.362	0.223	0.199	0.159	0.118	
	143.0	S-14B	SP*	POORLY GRA	DED SAND*	1-3-24							0.0	97.1	2.9	1.2	2	0.401	0.316	0.292	0.249	0.201	0.16
*	171.0	S-17	SP-SM*	POORLY GRADED	SAND with SILT*	1-3-24							3.1	90.7	6.2	1.4	3	0.692	0.353	0.318	0.257	0.199	0.13
•	187.0	S-18B	GP*	POORLY GRADED G	RAVEL with SAND*	1-23-24							70.4	25.5	4.0	3.5	80	62.306	23.235	14.307	4.878	1.876	0.29
٥	203.5	S-20	GM*	SILTY GRAVE	with SAND*	1-24-24							51.8	32.0	16.2			41.328	11.945	5.638	0.249	0.124	
0	221.0	S-22	GM*	SILTY GRAVE	with SAND*	1-24-24							59.0	28.9	12.1	0.9	331	53.145	17.162	10.423	0.877	0.200	
*Sa	mple was	assumed to	be non-pla	stic based on visual-manual examin	ation procedures. The	refore, the ASTM Gr	oup Nam	e is estii	mated ba	ased or	the grain size o	listribution	only.										
			US Siev	e Opening In Inches		US Siev	e Numb	pers							Hydro	omete	r Anal	ysis					
	100	3"		3/4" #	4 #10	_	#4	0			#200											**	
	00 Dercent Finer By Meight 00 00 01 00		4 3								0.1 8	5 4	3	2		0.01	8	5 4	. 3	2		ERANN SIZE SUMMARY SAWLOOD 10651-1 IBL, WIDDLERJ XIEROS INF ORTOBELS TAGEZ-INCLUDING OLD 10-19-22 GRANN SIZE SUMMARY SAWLOOD 10651-1 IBL, WIDDLERJ XIEROS INF OLD 10-19-22 100000	
						Gra	in Siz	ze In	Millim	neter													
				Gravel		S	and																
			Coarse	Fine	Coarse	Medium			F	ine					Si	lt					Clay	/	
		•																					

Sheet 1 of 1

_	-									,		1										-		
Symbol	Depth (feet)	Sample No.	USCS	Desc	ription		Test Date	MC (%)	LL	PL	PI	Moist Density (lbs/ft ³)	Specific Gravity	Gravel (%)	Sand (%)	Fines (%)	C _c	C _u	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀ (mm)	D ₃₀ (mm)	D ₂₀ (mm)	D ₁₀ (mm)
•	14.2	N-2	SP-SM*	POORLY GRADE	D SAND with SILT	r	3-14-24	30						0.1	93.2	6.6	1.1	2	0.615	0.278	0.235	0.183	0.161	0.113
	19.3	N-4	SP-SM*	POORLY GRADE	D SAND with SILT	r.	3-14-24	29						0.2	94.0	5.9	1.1	2	0.484	0.246	0.220	0.175	0.156	0.112
	34.9	N-8	SP-SM*	POORLY GRADE	D SAND with SILT	r	3-14-24	32						0.0	94.6	5.4	1.1	2	0.350	0.221	0.203	0.170	0.156	0.118
*	53.5	N-12	SP*	POORLY GF	RADED SAND*		3-14-24	28						0.0	95.4	4.6	0.9	2	0.391	0.288	0.261	0.201	0.175	0.153
٥	83.1	N-18	SP*	POORLY GF	ADED SAND*		3-14-24	32						0.0	95.2	4.8	1.0	2	0.379	0.258	0.229	0.182	0.162	0.126
0	130.0	N-24	SM*	SILTY	SAND*		3-14-24	32						0.4	73.7	25.9			0.456	0.233	0.197	0.118		
0	190.9	N-30	SP-SM*	POORLY GRADE	D SAND with SILT	r	3-14-24	27						0.0	93.9	6.1	1.2	3	0.801	0.484	0.408	0.289	0.232	0.139
*Sa	mple was	assumed to	be non-pla	stic based on visual-manual exam	ination procedures. 7	herefore, the A	ASTM Grou	up Name	e is estir	nated ba	ased on	the grain size d	istribution	only.		II			1	1				
			US Siev	e Opening In Inches		U	S Sieve	Numb	ers				Ŧ			Hydro	omete	r Ana	lysis					
	100	3"		3/4"	#4 #1	D		#40)			#200												
	Dercent Finer By Weight Percent Finer By Weight Provide State Provide St			2 10 8	5 4 3 2		8	5 4				0.1 8		3			0.01	8	5 4	4 3	2		GEVIN 15/E BUMWHY 28/WT COOL 10/E1 11/E1 & MODUL CE-1 X1/E1/01/E1 4/E 20/E1 11/E1 & MODUL CE-1 X1/E1/01/E1/E1/E1/E1/E1/E1/E1/E1/E1/E1/E1/E1/E1	1
							Grai	n Siz	e In I	Millim	eter													
				Gravel			Sa	nd																
			Coarse	Fine	Coarse	Me	dium			F	ine					Si	lt					Clay	/	
			00000	1 110	000100	Wick																		

Fine

Symbol	Depth (feet)	Sample No.	USCS	Descrip	otion	Test Date	MC (%)	LL	PL	PI	Moist Density (lbs/ft ³)	Specific Gravity	Gravel (%)	Sand (%)	Fines (%)	C _c	C _u	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀ (mm)	D ₃₀ (mm)	D ₂₀ (mm)	D ₁₀ (mm)
•	1.0	S-1	SP*	POORLY GRA	DED SAND*	1-3-24							1.1	98.8	0.1	1.0	3	1.707	0.757	0.642	0.460	0.374	0.291
	10.0	S-1	SP*	POORLY GRA	DED SAND*	1-3-24							1.6	96.8	1.6	1.1	2	1.098	0.381	0.341	0.274	0.238	0.179
	45.0	S-5	SP*	POORLY GRA	DED SAND*	1-3-24							2.5	95.4	2.1	0.9	2	0.415	0.296	0.264	0.202	0.175	0.152
*	95.0	S-7B	ML	SIL	г	1-3-24		n/a	n/a	NP			0.0	11.1	88.9			0.079					
•	105.0	S-8A	ML*	SILT with	SAND*	1-3-24							0.0	22.9	77.1			0.206					
0	135.4	S-9B	SM*	SILTY S	AND*	1-3-24							0.0	69.2	30.9			0.285	0.171	0.146			
0	146.0	S-10A	SP-SM*	POORLY GRADED	SAND with SILT*	1-3-24							0.0	93.3	6.7	1.2	2	0.368	0.234	0.210	0.169	0.151	0.100
*Sa	mple was	assumed to	be non-pla	astic based on visual-manual examina	ation procedures. Therefore, the	ASTM Grou	up Name	e is estir	nated ba	ased or	the grain size d	listribution	only.										
			US Siev	e Opening In Inches	l	JS Sieve	Numb	ers				~			Hydro	omete	r Anal	ysis					
	100	3"		3/4" #	4 #10	-	#4(0			#200											24	
	00 Dercent Finer By Weight 0 0 0 0 0		4 3					4 3				5 4	3	2		0.01	8	5 4	4 3	2		CRAIN SIZE SUMMARY-S&WLOGO 1665N-LIBR_WSDDTGPJ XL5105 167 00510 661-STAGE2-INCLUDING OLD 161-19-22 GPJ	
		[n Siz	e In I	Millim	neter													
				Gravel	I	Sa	nd								Si	lt					Clay	,	
			Coarse	Fine	Coarse M	edium			F	ine					01						0.0		


Fine

Sheet 2 of 2

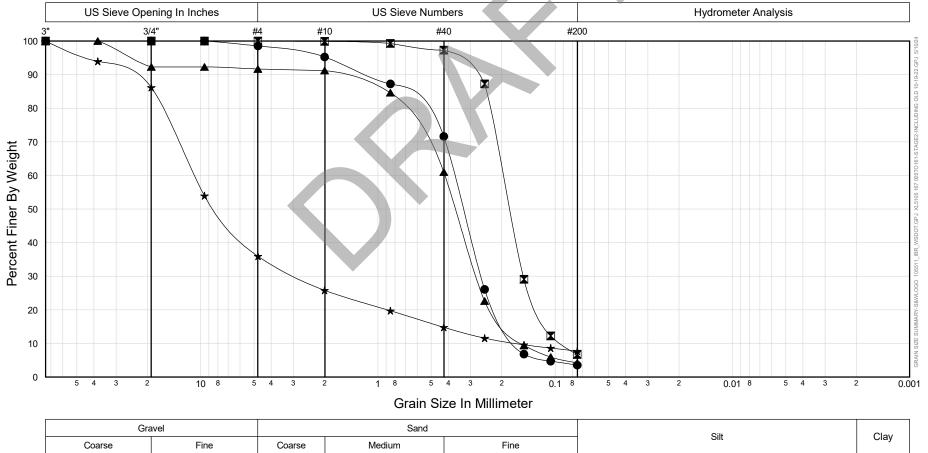
Job No: Y-12435 Project: Interstate Bridge Replacement Program

Symbol	Depth (feet)	Sample No.	USCS	Description	Test Date	MC (%)	LL	PL	PI	Moist Density (lbs/ft ³)	Specific Gravity		Sand (%)	Fines (%)	C _c	C _u	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀ (mm)	D ₃₀ (mm)	D ₂₀ (mm)	D ₁₀ (mm)
•	150.0	S-10B	SM	SILTY SAND	1-3-24		n/a	n/a	NP			0.0	54.6	45.4			0.278	0.153	0.101			
	155.0	S-11A	SP-SM*	POORLY GRADED SAND with SILT*	1-3-24							0.0	93.2	6.8	1.1	3	0.412	0.275	0.240	0.181	0.158	0.108
	186.0	S-12D	GP-GM*	POORLY GRADED GRAVEL with SILT and SAND*	1-25-24							59.8	28.6	11.6	0.8	301	32.943	13.860	10.185	0.717	0.282	
*	204.0	S-13B	GP-GM*	POORLY GRADED GRAVEL with SILT and SAND, with COBBLES* (cobbles not included in data)	1-25-24							57.0	32.1	10.9	0.8	289	47.936	17.964	9.199	0.927	0.236	
٥	220.0	S-14B	GP	POORLY GRADED GRAVEL with SAND	1-25-24							69.2	26.4	4.4	5.1	77	51.623	17.258	12.456	4.419	1.510	0.224

*Sample was assumed to be non-plastic based on visual-manual examination procedures. Therefore, the ASTM Group Name is estimated based on the grain size distribution only.

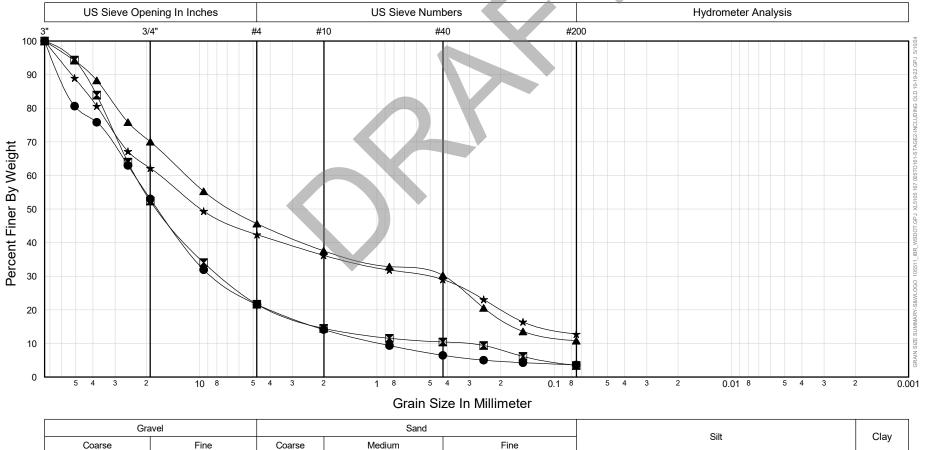
GRAIN SIZE ANALYSIS SUMMARY FOR IBR-06(+3-in.)

Sheet 1 of 1


Symbol	Depth (feet)	Sample No.	USCS			Descr				Test Date	MC (%)	LL	PL	PI	Moist Density (lbs/ft ³)	Specific Gravity	Gravel (%)	Sand (%)	Fines (%)	C _c	C _u	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀ (mm)	D ₃₀ (mm)	D ₂₀ (mm)	D ₁₀ (mn
$ \bullet $	204.0	S-13B	GW-GM*	POORLY	GRADE COBBLE	D GRAVE	L with SI	LT and S d in data	SAND, with a)	1-25-24							50.6	28.5	9.7	1.4	326		26.232	14.084	1.708	0.300	30.0
*Sar	mple wa	s assumed t	o be non-pla	astic based on v	visual-mar	nual examii	nation prod	cedures.	Therefore, the	ASTM Gro	up Name	e is estir	mated ba	ased on	the grain size c	listribution	onlv.										
				e Opening			,			JS Sieve									Hydro	omete	r Anal	ysis					
	10	3"		3/4"			#4	#	10		#40)			#200											54	
	10																									PJ 5/13/	
	9	0																								0-19-22.G	
	0																									G OLD 1	
	8	0																								NCLUDIN	
	ŧ 7	0																								TAGE2-I	
	/eig																									5TO 161-S	
	Percent Finer By Weight	0																								5 167 005	
	ы ы 5	i0					•																			J XL510	
	Ë																									SDOT.GF	
	4 sent	.0					•																			I BR W	
	Pero 3	0																								0 10551	
																										S&WLOG	
	2	20																								MMARY-5	
																										ZE SUN	
	1	0																								0	
	1	0																								GRAIN SI	
			5 4 3	2	10	8	5 4	3	2	1 8	5 4	4 3	2		0.1 8	5 4	3	2		0.01	8	5 4	- 3	2		C.001	
			5 4 3	2	10	8	5 4	3	2		5 z			ieter		5 4	3	2		0.01	8	5 4	- 3	2		Crain SI Grain SI	
			j 4 3	2 Gravel	10	8	5 4	3	2	Gra				ieter		54	3	2	Si		8	5 4	. 3	2	Clay		

Sheet 1 of 1

Job No: Y-12435 Project: Interstate Bridge Replacement Program


Symbol	Depth (feet)	Sample No.	USCS	Description	Test Date	MC (%)	LL	PL	PI	Moist Density (lbs/ft ³)	Specific Gravity		Sand (%)	Fines (%)	C _c	C _u	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀ (mm)	D ₃₀ (mm)	D ₂₀ (mm)	D ₁₀ (mm)
•	7.5	N-2	SP*	POORLY GRADED SAND*	3-14-24	31						1.5	95.0	3.5	1.1	2	1.141	0.371	0.330	0.262	0.213	0.163
	15.6	N-5	SP-SM*	POORLY GRADED SAND with SILT*	3-14-24	30						0.0	93.3	6.7	1.3	2	0.289	0.197	0.180	0.151	0.124	0.092
	33.5	N-9	SP*	POORLY GRADED SAND*	3-14-24	25						8.3	87.5	4.2	1.2	3	1.710	0.419	0.365	0.277	0.226	0.154
*	54.5	N-13	GP-GM*	POORLY GRADED GRAVEL with SILT and SAND*	3-14-24	13						64.0	28.3	7.7	4.5	65	26.737	10.839	8.172	2.858	0.883	0.167

*Sample was assumed to be non-plastic based on visual-manual examination procedures. Therefore, the ASTM Group Name is estimated based on the grain size distribution only.

Symbol	Depth (feet)	Sample No.	USCS	Description	Test Date	MC (%)	LL	PL	PI	Moist Density (lbs/ft ³)	Specific Gravity		Sand (%)	Fines (%)	C _c	C _u	D ₉₀ (mm)	D ₆₀ (mm)	D ₅₀ (mm)	D ₃₀ (mm)	D ₂₀ (mm)	D ₁₀ (mm)
•	32.0	SC-4	GP*	POORLY GRADED GRAVEL with SAND*	1-19-24							78.4	18.0	3.6	3.1	24	61.335	23.289	17.210	8.348	3.956	0.954
	52.0	SC-6	GP*	POORLY GRADED GRAVEL with SAND*	1-19-24							78.4	18.2	3.4	7.3	68	45.062	23.009	17.358	7.573	3.894	0.340
	68.0	SC-8	GP-GM*	POORLY GRADED GRAVEL with SILT and SAND*	1-19-24							54.4	34.8	10.8	0.2	194	41.425	11.857	6.499	0.418	0.240	
*	90.0	SC-10	GM*	SILTY GRAVEL with SAND*	1-23-24							57.6	29.6	12.8			52.682	16.903	9.835	0.539	0.197	

*Sample was assumed to be non-plastic based on visual-manual examination procedures. Therefore, the ASTM Group Name is estimated based on the grain size distribution only.

Client:	Shannon & Wilson, Inc.
Project Name:	IBR
Project Location:	Portland, OR
GTX #:	318519
Test Date:	01/26/24
Tested By:	nmk
Checked By:	ank

Laboratory pH of Soil by ASTM G51

Boring ID	Sample ID	Depth, ft	Description	Soil Temperature, ° C	Average pH Reading
IBR-01	SC-4A	33-36	Moist, dark gray sand	21	6.32
IBR-04	SC-3B	28-29.5	Moist, very dark gray sand	20.8	6.11
IBR-06	SC-1A	1-1.5	Moist, very dark reddish gray sand	21.3	6.44

Notes:

Client:	Shannon & Wilson
Project:	IBR
Location:	Portalnd, OR
GTX#:	318519
Test Date:	01/30/24
Due Date:	2/8/2024
Tested By:	NMK
Checked By:	ank

Laboratory Measurement of Soil Resistivity Using the Wenner Four-Electrode Method by ASTM G57 (Laboratory Measurement)

Boring ID	Sample ID	Depth, ft.	Sample Description	Electrical Resistivity, ohm-cm	Electrical Conductivity, (ohm-cm) ⁻¹
IBR-01	SC-4A	33-36 ft	Moist, dark gray sand	5,864	1.71E-04
IBR-04	SC-3B	28-29.5 ft	Moist, very dark gray sand	8,646	1.16E-04
IBR-06	SC-1A	1-1.5 ft	Moist, very dark gray reddish sand	43,422	2.30E-05

PO Box 572455 / Salt Lake City UT 84157-2455 / USA TEL +1 801 262 2448 · FAX +1 801 262 9870 · www.TEi-TS.com

Analysis No.	TS-A2411681
Report Date	31 January 2024
Date Sampled	25 January 2024
Date Received	29 January 2024
Where Sampled	Acton, MA USA
Sampled By	Client

When examined to the applicable requirements of:

ASTM D 512-12*	"Standard Test Methods for Chloride Ion in Water" Method B
ASTM D 516-16	"Standard Test Method for Sulfate Ion in Water"
ASTM G 200-20	"Standard Test Method for Measurement of Oxidation-Reduction Potential (ORP) of Soil"

Results:

ASTM D 512 - Chloride Method B

60	Sample -		Results		
Ja			% ¹	Detection Limit	
SC	SC-1A		0.0017		
IBR-06	IBR-06 1.0 – 1.5'		0.0017		
SC	-3B	< 10.	- 0.0010	10.	
IBR-04	28.0 – 28.5'	< 10.	< 0.0010	10.	
SC	-4A	< 10.	< 0.0010		
IBR-01	33.0 - 36.0'	< 10.	< 0.0010		

NOTE: ¹Percent by weight after drying and prepared as per the Standard. *Withdrawn 2021 without Replacement

ASTM D 516 – Sulfates (Soluble)

Sample		Results		Minimum	
Ja	Inple	ppm (mg/kg)	% ¹	Detection Limit	
SC	-1A	< 10.	- 0.0010		
IBR-06	1.0 – 1.5'				
SC	SC-3B		0.0010	10.	
IBR-04	28.0 – 28.5'			10.	
SC	-4A	10.	0.0010		
IBR-01	33.0 – 36.0'	10.	0.0010		

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

ASTM G 200 – Reduction Oxidation Potential (REDOX)

Sar	nple	Results	Minimum Detection Limit
SC	-1A		
IBR-06	1.0 – 1.5'	109.7 @ 21.1 ℃	
SC	-3B	122.5 @ 21.0 ℃	0.1mV
IBR-04	28.0 – 28.5'	122.3 @ 21.0 °C	0.1110
SC	-4A	138.9 @ 21.2 ℃	
IBR-01	33.0 - 36.0'	130.9 @ 21.2 *C	

NOTE: Prepared as per the Standard.

END OF ANALYSIS

USEPA Laboratory ID UT00930

Merrill Gee P.E. - Engineer in Charge

^{© 2023} by Testing Engineers International, Inc. CAVEAT: This certificate may not be reproduced except in full, without the expressed written consent of TEi-Testing Services, LLC. Note: The values in this certificate are the values obtained under standard test conditions as reported in the appropriate Report of Test and thus may be used for purposes of demonstrating compliance or for comparison with other units tested under the same standard. The results do not indicate the function of the sample(s) under nonstandard or field conditions. Statement of Risk: Client understands and agrees that declarations of conformity are made by directly comparing the measurement results against the test limits given in the standard without consideration to factors that may contribute to measurement uncertainty and accepts the shared risk that arises from this approach. This certificate gives the characteristics of the sample(s) submitted for testing only. It does not and may not be used to certify the characteristics of the product, nor to imply that the product in general meets the requirements of any standard, nor its acceptability in the marketplace. TEi stylized lettering and logo are registered trademarks and use is by contract and/or written permission only. USEPA Laboratory ID UT00930 TEi-Testing Services is a wholly owned LLC of Testing Engineers International, Inc.

APPENDIX E. NORTH PORTLAND HARBOR LABORATORY TEST RESULTS TABLE OF CONTENTS

1.	GENERAL		E-1
2.	SOIL TESTING	·····	E-1
2.1	Moisture (Natural Water) Content		E-1
2.2	Atterberg Limits		E-1
2.3	Particle-Size Analyses		
	2.3.1 Rotosonic Core Samples		E-2
2.4	Corrosivity Testing		E-2

ATTACHMENTS

Figure E1 - Atterberg Limits Results Figure E2 - Grain Size Distribution Corrosivity Potential Test Results

1. GENERAL

The soil samples obtained during the field explorations were described and identified in the field in accordance with the ODOT Geotechnical Design Manual (2023). The samples were then reviewed in Shannon & Wilson's laboratory. Physical characteristics of the samples were noted, and field descriptions and identifications were modified as necessary. During examination, select samples were chosen for further testing. We refined our descriptions and identifications based on the results of the laboratory tests, in accordance with the ODOT Geotechnical Design Manual (2023) and ASTM D2487, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).

The soil testing program included moisture content analyses, Atterberg limits determinations, particle-size analyses, and corrosivity testing. Testing was performed by Shannon & Wilson, GeoTesting Express (GTX) of Acton, MA, and TEi – Testing Services of Salt Lake City, UT, subcontracted through GeoTesting Express. All testing was completed in general accordance with applicable ASTM International standards. General descriptions of the tests are summarized in the following paragraphs. Laboratory test results from the six borings drilled in the main channel of the Columbia River are presented separately in Appendix D.

2. SOIL TESTING

2.1 Moisture (Natural Water) Content

Natural moisture content analyses were performed in general accordance with ASTM D2216 on selected soil samples. The natural moisture content is a measure of the relative amount of moisture in the soil at the time the explorations are performed and is defined as the ratio of water weight to dry soil weight, expressed as a percentage. Results of the moisture content analyses are presented on the boring logs in Appendix B.

2.2 Atterberg Limits

Atterberg limits were determined on selected samples in general accordance with ASTM D4318. This analysis yields index parameters of the soil that are useful in soil identification, as well as in a number of analyses, including liquefaction analysis. An Atterberg limits test determines a soil's liquid limit (LL) and plastic limit (PL). These are the maximum and minimum moisture contents at which the soil exhibits plastic behavior. A soil's plasticity index (PI) can be determined by subtracting PL from LL. For the purposes of soil description, ODOT uses the term nonplastic to refer to soils with a PI of 0 to 3, low plasticity for soils with a PI range of 3 to 15, medium plasticity for soils with a PI range of 15 to 30, and high plasticity for soils with a PI greater than 30. Results of Atterberg limits tests are presented in Figure E1.

2.3 Particle-Size Analyses

Particle-size analyses were conducted on selected samples to determine their grain-size distributions. Grain size distributions were determined in general accordance with ASTM D6913, D422, and D1140, as applicable. For select samples, a wet sieve analysis was performed to determine the percentage (by weight) of each sample passing the No. 200 (0.075 mm) sieve. For a subset of these samples, the material retained on the No. 200 sieve was shaken through a series of sieves to determine the distribution of the plus No. 200 fraction (ASTM D6913/D422). For some samples, only the percentage of the sample passing the No. 200 (0.075 mm) sieve was determined (ASTM D1140). For other samples, the particle size distribution of material finer than the No. 200 sieve was also determined using a hydrometer analysis (ASTM D422). For all particle-size analyses, the percentage of material passing the No. 200 sieve is presented on the boring logs in Appendix A. More complete results of particle size analyses performed on samples from the North Portland Harbor borings are presented in Figure E2.

2.3.1 Rotosonic Core Samples

As discussed in the report, the grain size distribution curves included in the laboratory test results may include particles that were mechanically fractured, cut, or pulverized during drilling, suggesting increased fines content or smaller particle sizes than are present in the in situ material.

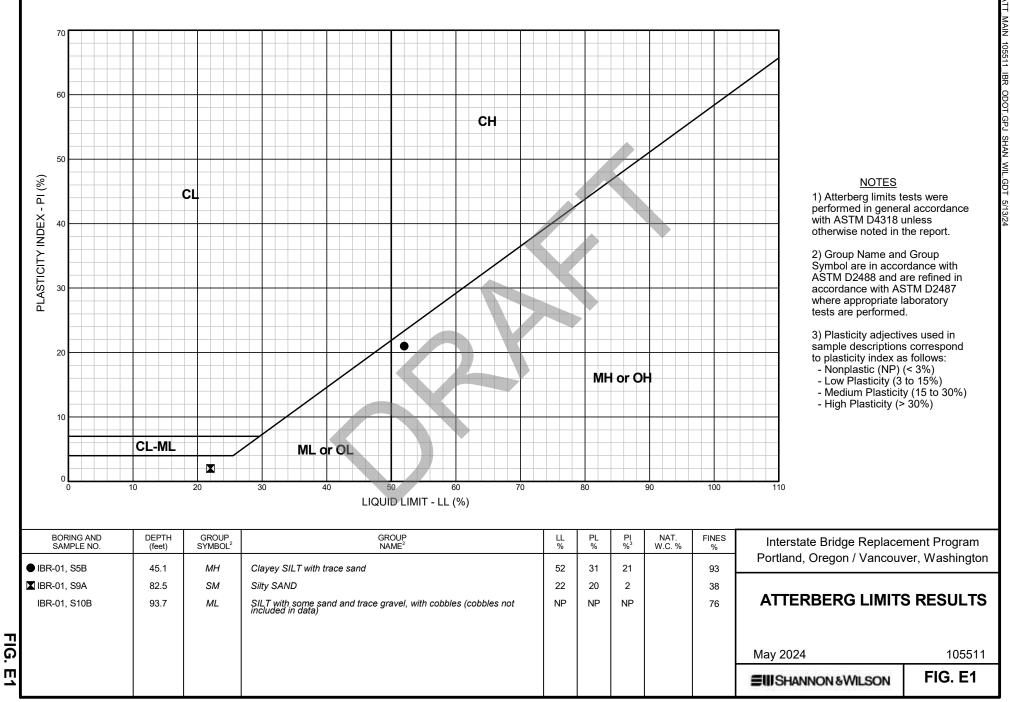
Where cobble-sized particles were retained on the 3-inch sieve, two grain size distribution plots are provided for the tested specimen: one that includes the mass of the material retained on the 3-inch sieve and one based on the mass of the material that passes through the 3-inch sieve. Soil names are based on the portion of the material that passes through the 3-inch sieve, in accordance with ASTM D2487, and "with cobbles" is added to the end of the soil name.

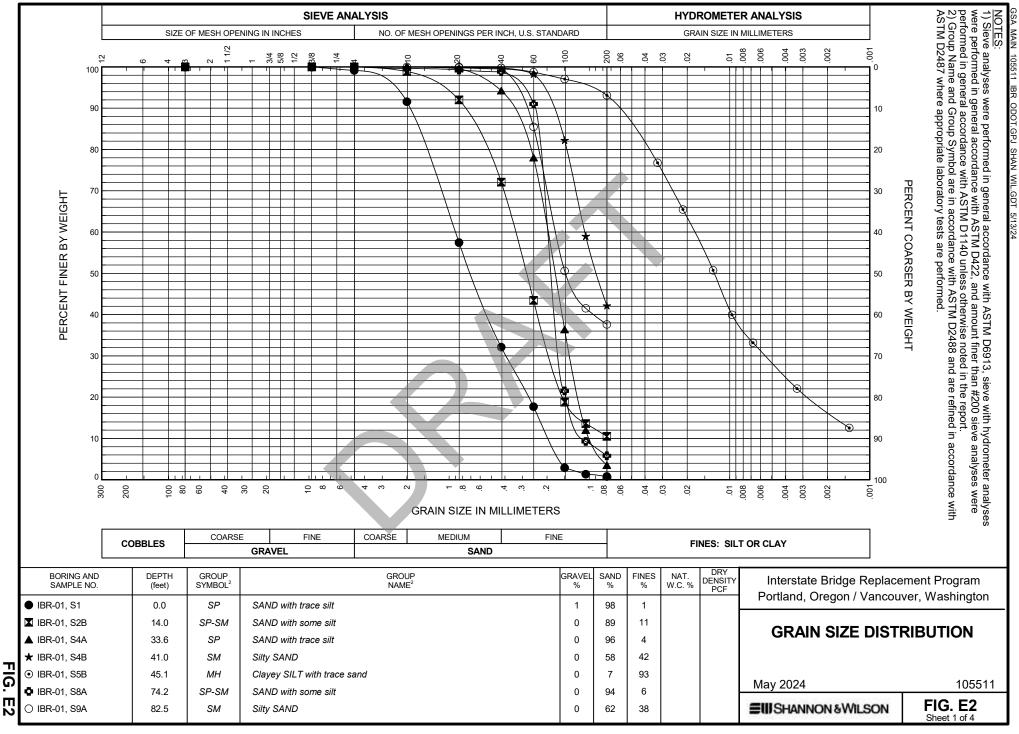
2.4 Corrosivity Testing

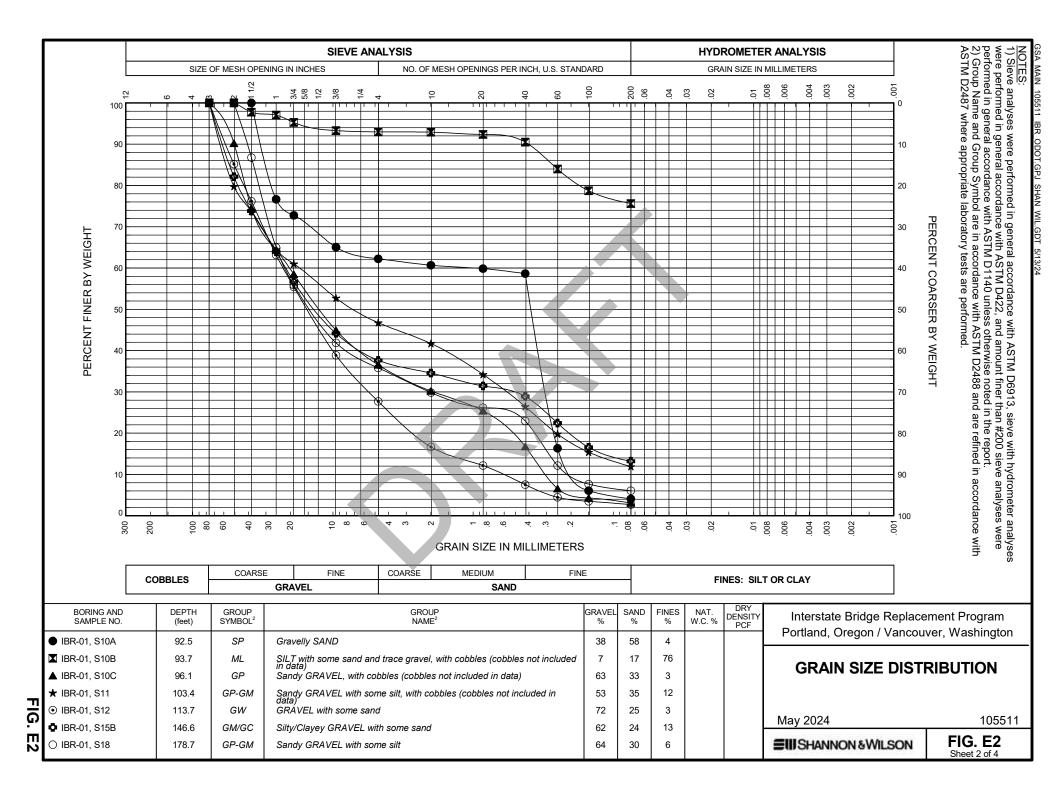
Analytical corrosivity testing was performed on selected soil samples from to evaluate the corrosivity potential of the soil. The corrosivity test suite included resistivity, chloride concentration, soil pH, sulfide concentration, and sulfate concentration. Analytical testing was performed by GeoTesting Express of Acton, Massachusetts and by TEi – Testing Services of Salt Lake City, Utah subcontracted through GeoTesting Express. The analytical testing reports and results are attached to the end of this appendix.

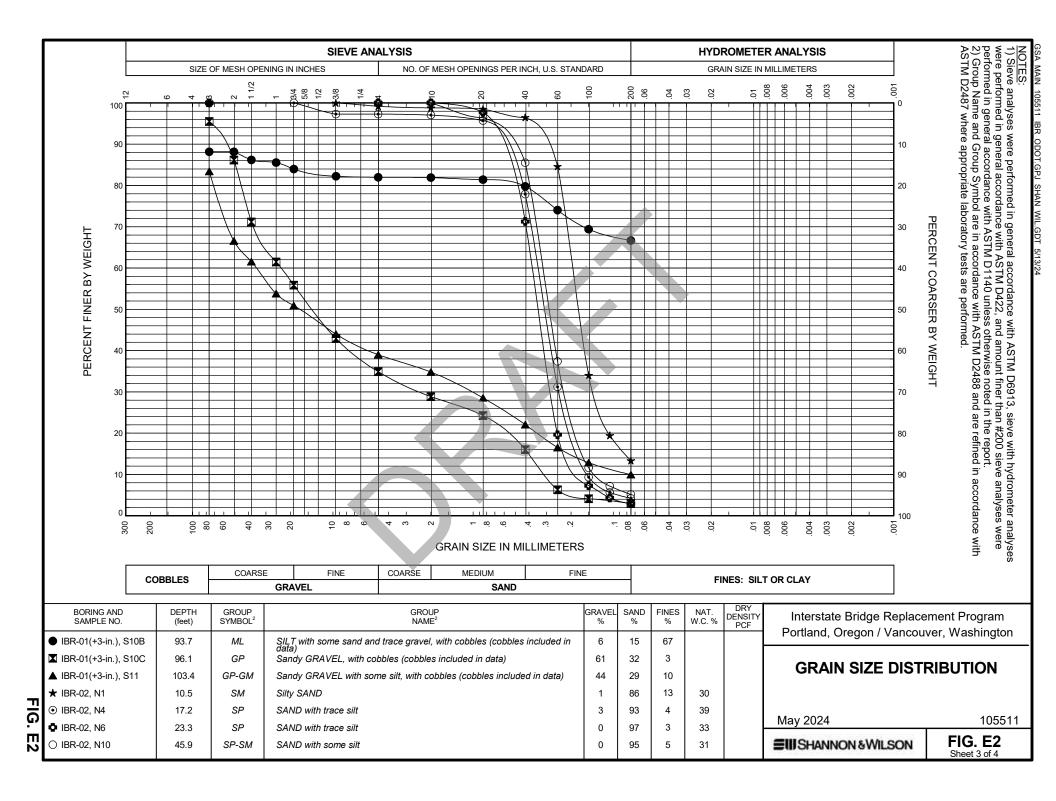
The corrosion potential of a soil is primarily evaluated by comparing measured pH, resistivity, and sulfate and chloride concentrations to the values specified in Section 10.7.5 of the AASHTO LFRD Bridge Design Specifications (9th Edition, 2020).

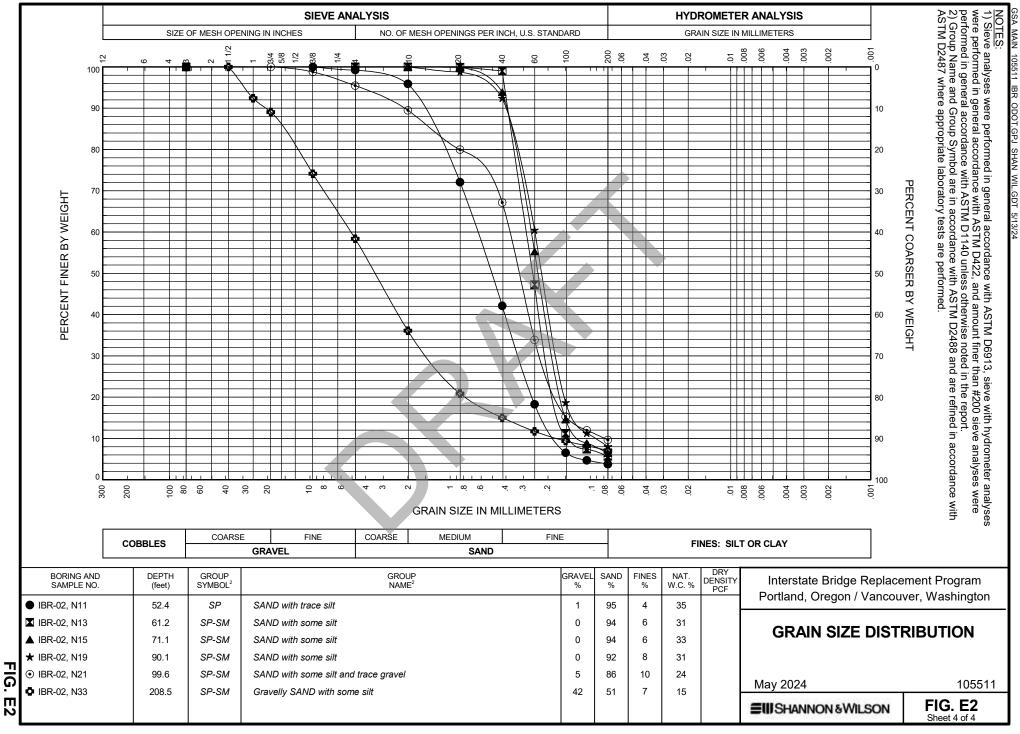
Soil pH is a measurement of the hydrogen ion activity of the soil. Soil pH is reported in Standard Units (S.U.) on a scale ranging from 0 to 14, with 7 being neutral. Soils with a pH less than 7 are considered acidic, and soils with a pH greater than 7 are considered alkaline. According to the AASHTO specifications, soils with a pH less than 5.5 and soils with a pH between 5.5 and 8.5 that also have high organic content are considered potentially corrosive.


Geotechnical Data Report




Resistivity (expressed as ohms-centimeter or ohms-cm) is the numerical expression of the ability of a soil to impede the transmission of an electrical current. Resistivity is the inverse of conductivity and is dependent on the presence of ions, their concentrations, mobility, and valence, as well as soil moisture and temperature. The AASHTO specifications state that effects of corrosion and deterioration shall be considered if resistivity values are less than 2,000 ohms-cm.


Sulfate and chloride concentrations were also measured. Sulfates can be converted to sulfides by naturally occurring bacteria. Sulfides, when allowed to oxidize, will produce sulfuric acid, which is highly corrosive. Chlorides will also chemically react and facilitate dissolution reactions with metals and concrete. According to the AASHTO specifications, the soil is considered corrosive if the concentration of sulfate or chloride is greater than 1,000 parts per million.


May 2024

Client:	Shannon & Wilson, Inc.
Project Name:	IBR
Project Location:	Portland, OR
GTX #:	318519
Test Date:	01/26/24
Tested By:	nmk
Checked By:	ank

Laboratory pH of Soil by ASTM G51

Boring ID	Sample ID	Depth, ft	Description	Soil Temperature, ° C	Average pH Reading
IBR-01	SC-4A	33-36	Moist, dark gray sand	21	6.32
IBR-04	SC-3B	28-29.5	Moist, very dark gray sand	20.8	6.11
IBR-06	SC-1A	1-1.5	Moist, very dark reddish gray sand	21.3	6.44

Notes:

Client:	Shannon & Wilson
Project:	IBR
Location:	Portalnd, OR
GTX#:	318519
Test Date:	01/30/24
Due Date:	2/8/2024
Tested By:	NMK
Checked By:	ank

Laboratory Measurement of Soil Resistivity Using the Wenner Four-Electrode Method by ASTM G57 (Laboratory Measurement)

Boring ID	Sample ID	Depth, ft.	Sample Description	Electrical Resistivity, ohm-cm	Electrical Conductivity, (ohm-cm) ⁻¹
IBR-01	SC-4A	33-36 ft	Moist, dark gray sand	5,864	1.71E-04
IBR-04	SC-3B	28-29.5 ft	Moist, very dark gray sand	8,646	1.16E-04
IBR-06	SC-1A	1-1.5 ft	Moist, very dark gray reddish sand	43,422	2.30E-05

PO Box 572455 / Salt Lake City UT 84157-2455 / USA TEL +1 801 262 2448 · FAX +1 801 262 9870 · www.TEi-TS.com

Analysis No.	TS-A2411681
Report Date	31 January 2024
Date Sampled	25 January 2024
Date Received	29 January 2024
Where Sampled	Acton, MA USA
Sampled By	Client

When examined to the applicable requirements of:

ASTM D 512-12*	"Standard Test Methods for Chloride Ion in Water" Method B
ASTM D 516-16	"Standard Test Method for Sulfate Ion in Water"
ASTM G 200-20	"Standard Test Method for Measurement of Oxidation-Reduction Potential (ORP) of Soil"

Results:

ASTM D 512 - C	Chloride Method B	
----------------	-------------------	--

Sample		Results		Minimum
		ppm (mg/kg)	% ¹	Detection Limit
SC-1A		47	0.0017	
IBR-06	1.0 – 1.5'	17.	0.0017	
SC-3B		< 10.	< 0.0010	10.
IBR-04	28.0 – 28.5'	< 10.	< 0.0010	10.
SC-4A		< 10.	< 0.0010	
IBR-01	33.0 - 36.0'	< 10.	< 0.0010	

NOTE: ¹Percent by weight after drying and prepared as per the Standard. *Withdrawn 2021 without Replacement

ASTM D 516 - Sulfates (Soluble)

Sample		Results		Minimum
		ppm (mg/kg)	% ¹	Detection Limit
SC-1A		< 10.	< 0.0010	
IBR-06	1.0 – 1.5'	< 10.	< 0.0010	
SC-3B		10.	0.0010	10.
IBR-04	28.0 – 28.5'	10.	0.0010	10.
SC-4A		10.	0.0010	
IBR-01	33.0 – 36.0'	10.	0.0010	

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

ASTM G 200 – Reduction Oxidation Potential (REDOX)

Sample		Results	Minimum Detection Limit
SC	-1A	109.7 @ 21.1 ℃	
IBR-06	1.0 – 1.5'	109.7 @ 21.1 %	
SC-3B		122.5 @ 21.0 ℃	0.1mV
IBR-04	28.0 – 28.5'	122.3 @ 21.0 °C	0.1111
SC-4A		138.9 @ 21.2 ℃	
IBR-01	33.0 - 36.0'	130.9 @ 21.2 °C	
IBR-01			

NOTE: Prepared as per the Standard.

END OF ANALYSIS

USEPA Laboratory ID UT00930

Merrill Gee P.E. - Engineer in Charge

^{© 2023} by Testing Engineers International, Inc. CAVEAT: This certificate may not be reproduced except in full, without the expressed written consent of TEi-Testing Services, LLC. Note: The values in this certificate are the values obtained under standard test conditions as reported in the appropriate Report of Test and thus may be used for purposes of demonstrating compliance or for comparison with other units tested under the same standard. The results do not indicate the function of the sample(s) under nonstandard or field conditions. Statement of Risk: Client understands and agrees that declarations of conformity are made by directly comparing the measurement results against the test limits given in the standard without consideration to factors that may contribute to measurement uncertainty and accepts the shared risk that arises from this approach. This certificate gives the characteristics of the sample(s) submitted for testing only. It does not and may not be used to certify the characteristics of the product, nor to imply that the product in general meets the requirements of any standard, nor its acceptability in the marketplace. TEi stylized lettering and logo are registered trademarks and use is by contract and/or written permission only. USEPA Laboratory ID UT00930 TEi-Testing Services is a wholly owned LLC of Testing Engineers International, Inc.

APPENDIX F. IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIROMENTAL REPORT

EIIISHANNON & WILSON

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the Geoprofessional Business Association (https://www.geoprofessional.org)